Electronic Supplementary Information

Microwave-promoted regio- and stereoselective vinylation of heterocyclic thiols

Nimmakuri Rajesh, Rupam Sarma and Dipak Prajapati*

Medicinal Chemistry Division, CSIR-North-East Institute of Science & Technology, Jorhat, Assam 785006, India

E-mail: dr_dprajapati2003@yahoo.co.uk

Table of Contents:

General Information	2
Experimental Data	2
Characterization of the Products	3
NMR Spectra of the Products	11
References	.27

General information

All the commercially available reagents were used as received. IR Spectra were recorded on a SHIMADZU FTIR-8400 instrument. NMR spectra were recorded on Advance DPX 300 MHz FT-NMR spectrometer using tetramethylsilane (TMS) as an internal standard. Mass spectra were recorded on ESQUIRE 3000 Mass spectrometer. All the experiments were monitored by thin layer chromatography (TLC). TLC was performed on pre-coated silica gel plates (Merck). After elution, plate was visualized under UV illumination at 254 nm for UV active materials. Further visualization was achieved by staining KMnO₄ warming in a hot air oven. Column chromatography was performed on silica gel (100-200 mesh, Merck) using ethyl acetate: hexane as eluent. The microwave reactor used is Anton Paar Synthos 3000 microwave reactor.

Microwave Instrumentation

All microwave reactions were carried out in a Synthos 3000 (Anton Paar) microwave reactor. The multitude microwave has a twin magnetron (2.45 GHz) with maximum output power of 1400 W. The output power can be controlled in unpulsed control mode over whole power which is adjustable in 1 W increment. A 68xxx series microprocessor system control is used to measure power, pressure, time and temperature during the reaction. The temperature and pressure were monitored throughout the reaction by an infrared detector. The temperature can be measured from 0 to 280 °C with uncertainty $\pm 1\%$. The pressure can be measured from 0 to 280 °C with uncertainty $\pm 1\%$. The pressure can be measured from 0 to 86 bar with uncertainty ± 0.2 bar. The MW power is initially set at 700 W and the reaction is run. However, during the course of the reaction, once the set temperature and pressure limit is reached, the reactor automatically adjusts the power by lowering it.

Experimental data

General procedure for the vinylation of heterocyclic thiols

Heterocyclic thiol (1 mmol) and activated terminal alkyne (1.3 mmol) were irradiated in a closed vessel by employing methanol (4ml) as solvent inside a microwave reactor at 500 Watt, 100 0 C and 12 bar for specified time. After completion of reaction, solvent was distilled off and crude mixture is purified by coloum chromatography using ethylacetate: hexane as the eluent to give the desired products (**3aa-3hb**).

General procedure for the vinylation of aromatic thiols

Aromatic thiol (1 mmol) and activated terminal alkyne (1.1 mmol) were irradiated in a closed vessel by employing methanol (4ml) as solvent inside a microwave reactor at 500 Watt, 100 0 C and 12 bar for specified time. After completion of reaction, solvent was distilled off and crude mixture is purified by coloum chromatography using ethylacetate: hexane as the eluent to give the desired products (**5a-f**).

Characterization data of the Products

(Z)-Ethyl-3-(benzo[d]thiazol-2-ylthio)acrylate (3aa)

White solid; m.p. 80.5-82 0 C; ¹H NMR (300 MHz, CDCl₃) δ 8.38 (d, J = 9.9 Hz, 1H), 7.96 (d, J = 8.1 Hz, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.51 (t, 1H), 7.38 (t, 1H), 6.19 (d, J = 9.9 Hz, 1H), 4.31 (q, 2H), 1.36 (t, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.5, 164.3, 152.6, 140.6, 135.4, 126.4, 125, 122.1, 121.3, 115.7, 60.9, 14.3; MS (GCMS, m/z) 265 [M]+; Anal. Calcd. for C₁₂H₁₁NO₂S₂: C, 54.32; H, 4.18; N, 5.28; O, 12.06; S, 24.17. Found C, 54.22; H, 4.12; N, 5.20; O, 12.13; S, 24.33.

(Z)-Methyl-3-(benzo[d]thiazol-2-ylthio)acrylate (3ab)

White solid; m.p. 96-97.5 0 C; ¹H NMR (300 MHz, CDCl₃) δ 8.4 (d, J = 10 Hz, 1H), 7.96 (d, J = 8 Hz, 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.5 (t, 1H), 7.39 (t, 1H), 6.2 (d, J = 9.9 Hz, 1H), 3.82 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.9, 164.1, 152.6, 141, 135.4, 126.4, 125, 122.1, 121.3, 115.2, 51.9; MS (GCMS, m/z) 251 [M]+; Anal. Calcd. for C₁₁H₉NO₂S₂: C, 52.57; H, 3.61; N, 5.57; O, 12.73; S, 25.52. Found C, 52.59; H, 3.6; N, 5.62; O, 12.68; S, 25.51.

(Z)-Ethyl-3-(benzo[d]oxazol-2-ylthio)acrylate (3ba)

White solid; m.p. 111-112.2 0 C; ¹H NMR (300 MHz, CDCl₃) δ 8.23 (d, J = 9.8 Hz, 1H), 7.6 (d, J = 8.6 Hz, 1H), 7.52 (d, J = 8.9 Hz, 1H), 7.34 (t, 2H), 6.26 (d, J = 9.9 Hz, 1H), 4.32 (q, 2H), 1.37 (t, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.5, 162.8, 152, 141.2, 139.3, 124.7, 124.6, 118.9, 117, 110.3, 61, 14.2; MS (GCMS, m/z) 249 [M]+ ; Anal. Calcd. for C₁₂H₁₁NO₃S: C, 57.82; H, 4.45; N, 5.62; O, 19.25; S, 12.86. Found C, 57.77; H, 4.52; N, 5.53; O, 19.26; S, 12.92.

(Z)-Methyl-3-(benzo[d]oxazol-2-ylthio)acrylate (3bb)

White solid; m.p. 92-93.5 0 C; ¹H NMR (300 MHz, CDCl₃) δ 8.24 (d, J = 9.8 Hz, 1H), 7.6 (d, J = 9 Hz, 1H), 7.52 (d, J = 9.1 Hz, 1H), 7.34 (t, 2H), 6.27 (d, J = 9.9 Hz, 1H), 3.83 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.9, 162.7, 152, 141.2, 139.7, 124.7, 124.6, 118.9, 116.5, 110.3, 52, 30.9; MS (GCMS, m/z) 235 [M]+; Anal. Calcd. for C₁₁H₉NO₃S: C, 56.16; H, 3.86; N, 5.95; O, 20.40; S, 13.63. Found C, 56.11; H, 3.91; N, 5.89; O, 20.42; S, 13.67.

(Z)-Ethyl-3-(pyridin-2-ylthio)acrylate (3ca)

White solid; m.p. 96-97.5 0 C; ¹H NMR (300 MHz, CDCl₃) δ 8.56 (d, J = 10.1 Hz, 2H), 7.62 (t, 1H), 7.33 (d, J = 7.9 Hz, 1H), 7.15 (t, 1H), 6.11 (d, J = 10.2 Hz, 1H), 4.29 (q, 2H), 1.35 (t, 3H); {}^{13}C NMR (75 MHz, CDCl₃) δ 166.8, 155.3, 149.6, 141.8, 136.8, 123.2, 121.2, 113.9, 60.4, 14.3; MS (GCMS, m/z) 209 [M]+; Anal. Calcd. for C₁₀H₁₁NO₂S: C, 57.39; H, 5.30; N, 6.69; O, 15.29; S, 15.32. Found C, 57.41; H, 5.23; N, 6.75; O, 15.27; S, 15.34.

(Z)-Methyl-3-(pyridin-2-ylthio)acrylate (3cb)

White solid; m.p. 72-72.5 0 C; ¹H NMR (300 MHz, CDCl₃) δ 8.58 (d, J = 10.2 Hz, 2H), 7.62 (t, 1H), 7.33 (d, J = 7.9 Hz, 1H), 7.15 (t, 1H), 6.12 (d, J = 10.2 Hz, 1H), 3.79 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167.2, 155, 149.6, 142.3, 136.8, 123.3, 121.3, 113.4, 51.5; MS (GCMS, m/z) 195 [M]+; Anal. Calcd. for C₉H₉NO₂S: C, 55.37; H, 4.65; N, 7.17; O, 16.39; S, 16.42. Found C, 55.41; H, 4.62; N, 7.18; O, 16.28; S, 16.51.

(Z)-Ethyl-3-(1-methyl-1H-imadazol-2-ylthio)acrylate (3da)

Colourless liquid ; ¹H NMR (300 MHz, CDCl₃) δ 7.76 (d, J = 9.8 Hz, 1H), 7.08 (d, J = 0.75 Hz, 1H), 6.98 (d, J = 0.87 Hz, 1H), 6.07 (d, J = 9.9 Hz, 1H), 4.2 (q, 2H), 3.6 (s, 3H), 1.35 (t, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.4, 144.5, 140.4, 129.1, 123, 114.6, 60.4, 33.2, 14.1; MS (GCMS, m/z) 212 [M]+ ; Anal. Calcd. for C₉H₁₂N₂O₂S: C, 50.92; H, 5.70; N, 13.20; O, 15.07; S, 15.17. Found C, 50.96; H, 5.62; N, 13.25; O, 15.05; S, 15.12.

(Z)-Methyl-3-(1-methyl-1H-imadazol-2-ylthio)acrylate (3db)

White solid; m.p. 52-52.9 0 C; ¹H NMR (300 MHz, CDCl₃) δ 7.78 (d, J = 9.8 Hz, 1H), 7.10 (d, J = 1.05 Hz, 1H), 6.98 (d, J = 1.05 Hz, 1H), 6.09 (d, J = 9.9 Hz, 1H), 3.8 (s, 3H), 3.66 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167, 145, 140.6, 129.5, 123, 114.2, 51.6, 33.2; MS (GCMS, m/z) 198 [M]+ ; Anal. Calcd. for C₈H₁₀N₂O₂S: C, 48.47; H, 5.08; N, 14.13; O, 16.14; S, 16.17. Found C, 48.53; H, 4.99; N, 14.1; O, 16.16; S, 16.22.

(Z)-Ethyl-3-(pyrimidin-2-ylthio)acrylate (3ea)

White solid; m.p. 80-81 0 C; ¹H NMR (300 MHz, CDCl₃) δ 8.63 (d, J = 4.8 Hz, 2H), 8.54 (d, J = 10.4 Hz, 1H), 7.13 (t, 1H), 6.13 (d, J = 10.4 Hz, 1H), 4.3, (q, 2H), 1.36 (t, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.9, 166.6, 157.8, 157.6, 141.6, 118.1, 114.5, 60.6, 14.2; MS (GCMS, m/z) 210 [M]+; Anal. Calcd. for C₉H₁₀N₂O₂S: C, 51.41; H, 4.79; N, 13.32; O, 15.22; S, 15.25. Found C, 51.34; H, 4.8; N, 13.34; O, 15.36; S, 15.16.

(Z)-Methyl-3-(pyrimidin-2-ylthio)acrylate (3eb)

White solid; m.p. 115-116.2 0 C; ¹H NMR (300 MHz, CDCl₃) δ 8.64 (d, J = 4.8 Hz, 2H), 8.56 (d, J = 10.4 Hz, 1H), 7.13 (t, 1H), 6.14 (d, J = 10.3 Hz, 1H), 3.81 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.8, 166.9, 157.8, 157.6, 141.9, 118.1, 114.4, 51.6; MS (GCMS, m/z) 196 [M]+; Anal. Calcd. for C₈H₈N₂O₂S: C, 48.97; H, 4.11; N, 14.28; O, 16.31; S, 16.34. Found C, 49.07; H, 4.19; N, 14.34; O, 16.19; S, 16.21.

(Z)-Ethyl-3-((4,5-dihydrothiazol-2-yl)thio)acrylate (3fa)

Colourless liquid; ¹H NMR (300 MHz, CDCl₃) δ 8.11 (d, J = 10 Hz, 1H), 6.04 (d, J = 10 Hz, 1H), 3.49 (q, 2H), 1.33 (t, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.3, 164.2, 140.5, 115.3, 63.9, 60.7, 35.5, 14.2; MS (GCMS, m/z) 217 [M]+; Anal. Calcd. for C₈H₁₁NO₂S₂: C, 44.22; H, 5.10; N, 6.45; O, 14.73; S, 29.51. Found C, 44.19; H, 5.06; N, 6.45; O, 14.77; S, 29.53.

(Z)-Methyl-3-((4,5-dihydrothiazol-2-yl)thio)acrylate (3fb)

Colourless liquid; ¹H NMR (300 MHz, CDCl₃) δ 8.13 (d, J = 10 Hz, 1H), 6.06 (d, J = 10 Hz, 1H), 4.3 (t, 2H), 3.77 (s, 3H), 3.49 (t, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 166.6, 164, 140.8, 114.8, 63.9, 51.7, 35.5; MS (GCMS, m/z) 203 [M]+; Anal. Calcd. for C₇H₉NO₂S₂: C, 41.36; H, 4.46; N, 6.89; O, 15.74; S, 31.55. Found C, 41.39; H, 4.46; N, 6.78; O, 15.66; S, 31.71.

(Z)-Ethyl-3-((5-methyl-1,3,4-thiadiazol-2-yl)thio)acrylate (3ga)

White solid; m.p. 69.2-71 0 C; ¹H NMR (300 MHz, CDCl₃) δ 8.16 (d, J = 9.8 Hz, 1H), 6.16 (d, J = 9.8 Hz, 1H), 4.3 (q, 2H), 2.78 (s, 3H), 1.35 (t, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.5, 166.3, 163.6, 140.5, 116, 60.9, 15.7, 14.2; MS (GCMS, m/z) 230 [M]+; Anal. Calcd. for C₈H₁₀N₂O₂S₂: C, 41.72; H, 4.38; N, 12.16; O, 13.89; S, 27.85. Found C, 41.56; H, 4.52; N, 12.15; O, 13.86; S, 27.91.

(Z)-Methyl-3-((5-methyl-1,3,4-thiadiazol-2-yl)thio)acrylate (3gb)

White solid; m.p. 115-116.2 0 C; ¹H NMR (300 MHz, CDCl₃) δ 8.18 (d, J = 9.8 Hz, 1H), 6.17 (d, J = 9.8 Hz, 1H), 3.81 (s, 3H), 2.78 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.9, 166.3, 163.5, 140.9, 115.5, 51.9, 15.7; MS (GCMS, m/z) 216 [M]+; Anal. Calcd. for C₇H₈N₂O₂S₂: C, 38.87; H, 3.73; N, 12.95; O, 14.80; S, 29.65. Found C, 38.96; H, 3.71; N, 12.95; O, 14.86; S, 29.52.

(Z)-Ethyl-3-((1-methyl-1H-tetrazol-5-yl)thio)acrylate (3ha)

White solid; m.p. 107-107.5 0 C; ¹H NMR (300 MHz, CDCl₃) δ 8.06 (d, J = 9.6 Hz, 1H), 6.29 (d, J = 9.6 Hz, 1H), 4.32 (q, 2H), 4.02 (s, 3H), 1.37 (t, 3H); {}^{13}C NMR (75 MHz, CDCl₃) δ 166.6, 153.1, 138.7, 117.5, 61.2, 33.6, 14.2; MS (GCMS, m/z) 214 [M]+; Anal. Calcd. for C₇H₁₀N₄O₂S: C, 39.24; H, 4.70; N, 26.15; O, 14.94; S, 14.97. Found C, 39.21; H, 4.66; N, 26.21; O, 15.02; S, 14.9.

(Z)-Methyl-3-((1-methyl-1H-tetrazol-5-yl)thio)acrylate (3hb)

White solid; m.p. 111.9-113 0 C; ¹H NMR (300 MHz, CDCl₃) δ 8.07 (d, J = 9.6 Hz, 1H), 6.3 (d, J = 9.6 Hz, 1H), 4.02 (s, 3H), 3.84 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167, 153, 139.1, 117.1, 52.1, 33.6; MS (GCMS, m/z) 200 [M]+ ; Anal. Calcd. for C₆H₈N₄O₂S: C, 35.99; H, 4.03; N, 27.98; O, 15.98; S, 16.02. Found C, 36.09; H, 3.94; N, 27.88; O, 15.92; S, 16.17.

Ethyl-3-(*o*-tolylthio) acrylate (5a)

Colourless liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.48 (d, J = 7.05 Hz, 1H), 7.31 (m, 3H), 7.13 (d, J = 10 Hz, 1H), 5.93 (d, J = 10 Hz, 1H), 4.29 (q, 2H), 2.45 (s, 3H), 1.35 (t, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.6, 150.2, 139.8, 135.2, 132.7, 130.6, 128.7, 126.9, 113.3, 60.3, 20.9, 14.3; MS (GCMS, m/z) 222 [M]+; Anal. Calcd. for C₁₂H₁₄O₂S: C, 64.83; H, 6.35; O, 14.39; S, 14.42. Found C, 64.92; H, 6.24; O, 14.28; S, 14.56.

Ethyl-3-((2-methoxyphenyl)thio)acrylate (5b)

Colourless liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.47 (m, 2H), 7.21 (d, J = 10.1 Hz, 1H), 6.95 (m, 2H), 5.9 (d, J = 10.1 Hz, 1H), 4.28 (q, 2H), 3.87 (s, 3H), 1.34 (t, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.6, 158.2, 150.3, 133.4, 130.2, 123.4, 121.1, 112.9, 111.4, 60.2, 55.8, 14.3; MS (GCMS, m/z) 238 [M]+; Anal. Calcd. for C₁₂H₁₄O₃S: C, 60.48; H, 5.92; O, 20.14; S, 13.46. Found C, 60.49; H, 5.96; O, 20.12; S, 13.43.

Ethyl-3-((4-nitrophenyl)thio)acrylate (5c)

Yellow solid; m.p. 109-111.2 0 C; ¹H NMR (300 MHz, CDCl₃) δ 8.24 (d, J = 8.6 Hz, 2H), 7.63 (d, J = 8.6 Hz, 2H), 7.31 (d, J = 10 Hz, 1H), 6.1 (d, J = 9.9 Hz, 1H), 4.3 (q, 2H), 1.34 (t, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.2, 147, 144.9, 144.7, 129.9, 124.3, 115.9, 66.7, 14.3; MS (GCMS, m/z) 253 [M]+; Anal. Calcd. for C₁₁H₁₁NO₄S: C, 52.16; H, 4.38; N, 5.53; O, 25.27; S, 12.66. Found C, 52.12; H, 4.42; N, 5.5; O, 25.24; S, 12.72.

Ethyl-3-(p-tolyithio)acrylate (5d)¹

Colourless liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.51 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 8.2 Hz, 2H), 7.2 (d, J = 9.9 Hz, 1H), 5.95 (d, J = 10 Hz, 1H), 4.28 (q, 2H), 1.34 (t, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.5, 150.5, 147.4, 138.4, 133.3, 131.3, 130.4, 130, 113, 60.2, 21.2, 14.3; MS (GCMS, m/z) 222 [M]+; Anal. Calcd. for C₁₂H₁₄O₂S: C, 64.83; H, 6.35; O, 14.39; S, 14.42. Found C, 64.81; H, 6.32; O, 14.43; S, 14.44.

Ethyl-3-((4-bromophenyl)thio)acrylate (5e)²

Colourless liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.51 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 8.2 Hz, 2H), 7.2 (d, J = 10 Hz, 1H), 5.95 (d, J = 9.9 Hz, 1H), 4.28 (q, 2H), 1.34 (t, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.4, 148.5, 145.7, 135.3, 134.3, 132.8, 132.5, 116.2, 114, 60.4, 14.3; MS (GCMS, m/z) 287.9 [M]+; Anal. Calcd. for C₁₁H₁₁BrO₂S: C, 46.01; H, 3.86; Br, 27.82; O, 11.14; S, 11.17. Found C, 45.91; H, 4.12; Br, 27.71; O, 11.11; S, 11.15.

Ethyl-3-((4-chlorophenyl)thio)acrylate (5f)²

Colourless liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.44 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.3 Hz, 2H), 7.2 (d, J = 10 Hz, 1H), 5.95 (d, J = 10 Hz, 1H), 4.28 (q, 2H), 1.35 (t, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.4, 148.8, 134.7, 132.4, 129.5, 113.9, 60.4, 14.3; MS (GCMS, m/z) 242 [M]+; Anal. Calcd. for C₁₁H₁₁ClO₂S: C, 54.43; H, 4.57; Cl, 14.61; O, 13.18; S, 13.21. Found C, 54.40; H, 4.52; Cl, 14.71; O, 13.19; S, 13.18.

NMR Spectra of the Products

Fig S-2: ¹³C NMR Spectrum of Product **3ab**

Fig S-3: ¹H NMR Spectrum of Product 3ba

Fig S-6: ¹³C NMR Spectrum of Product 3bb

Fig S-8: ¹³C NMR Spectrum of Product 3cb

Fig S-9: ¹H NMR Spectrum of Product 3da

Fig S-10: ¹³C NMR Spectrum of Product 3da

Fig S-12: ¹³C NMR Spectrum of Product 3db

Fig S-13: ¹H NMR Spectrum of Product 3eb

Fig S-14: ¹³C NMR Spectrum of Product 3eb

Fig S-15: ¹H NMR Spectrum of Product 3fa

Fig S-16: ¹³C NMR Spectrum of Product 3fa

Fig S-18: ¹³C NMR Spectrum of Product 3fb

Fig S-19: ¹H NMR Spectrum of Product 3ga

ppm 220 200 180 160 140 120 100 80 60 40 20

Fig S-20: ¹³C NMR Spectrum of Product 3ga

Fig S-21: ¹H NMR Spectrum of Product 3gb

Fig S-22: ¹³C NMR Spectrum of Product 3gb

Fig S-24: ¹³C NMR Spectrum of Product 3ha

Fig S-26: ¹³C NMR Spectrum of Product 3hb

Fig S-28: ¹³C NMR Spectrum of Product 5a

Fig S-30: ¹³C NMR Spectrum of Product 5b

120 100

1 ^{...}...

ppm 220

References:

- 1. C. W. Downey, S. Craciun, A. M. Neferu, C. A. Vivelo, C. J. Mueller, B. C. Southall, S. Corsi, Eric W. Etchill, R. J. Sault, *Tetrahedron. Lett.*, **2012**, *53*, 5763–5765.
- 2. N. A. Randive, V. Kumar, V. A. Nair, Monatsh Chem., 2010, 141, 1329–1332.