Supporting Information

Enantioselective 1,4-addition of kojic acid derivatives to $\boldsymbol{\beta}$ nitroolefins catalyzed by a cinchonine derived sugar thiourea.
B. V. Subba Reddy, ${ }^{[\mathrm{a}]^{*}}$ S. Madhusudana Reddy, ${ }^{[a]}$ Manisha Swain, ${ }^{[a]}$ Srikanth Dudem, ${ }^{[b]}$ Shasi V Kalivendi, ${ }^{[b]}$ C. Suresh Reddy ${ }^{[\mathrm{cc}]}$
${ }^{a}$ Natural Product Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India, 500007
${ }^{b}$ Centre for Chemical Biology, IICT, Hyderabad, 500 007, India
${ }^{\text {c Department of Chemistry, Sri Venkateswra University, Tirupati, India. }}$

Email: basireddy@iict.res.in

Contents

1. General remarks. S2
2. Preparation of starting materials. S2-S4
3. General procedure for preparing thiourea catalysts. S4
4. Spectral data of thiourea catalysts. S4-S6
5. General procedure for Michael reaction. S7
6. Characterization data of all products. S7-S19
7. Copy of ${ }^{1} \mathrm{HNMR}$ and ${ }^{13} \mathrm{C}$ NMR of ligands. S20-S22
8. Copy of ${ }^{1} \mathrm{HNMR}$ and ${ }^{13} \mathrm{C}$ NMR of all products. S23-S44

9. HPLC diagram of all compounds.

10. References.

1. General Remarks.

All the solvents were purchased from commercial source and dried prior to use. All the enantioselective Michael reactions were performed in an oven-dried Schlenk flask under an inert atmosphere of argon. All products were purified by column chromatography on silica gel 60-120 mesh using a mixture of ethyl acetate-hexane as eluents. Progress of the reaction was monitored by Thin Layer Chromatography. ${ }^{1} \mathrm{H}$ NMR spectra were recorded in CDCl_{3} using 300 MHz or 500 MHz spectrometers. ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} using 75 MHz and 125 MHz NMR spectrometers. The chemical shifts (δ) were reported in parts per million (ppm) with respect to TMS as an internal standard. The coupling constants (J) are quoted in Hertz (Hz). Mass spectra were recorded on mass spectrometer by Electrospray ionization (ESI) technique. HPLC analysis was carried out in a Shimadzu LC-20 using chiral columns. A mixture of hexane-isopropyl alcohol was used as eluent. Optical rotations of the products were recorded on Digipol-781 M6U Polarimeter.

2. Preparation of starting materials.

Nitro olefins were purchased from Aldrich.

a) General procedure for preparation of 2-(tert-butyldimethylsilanylo-xymethyl)-5-hydroxypyrane-4-one ${ }^{(1)}$ (1)

To a stirred solution of kojic acid (5 mmol) in $25 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, triethylamine (10 mmol) and dimethylaminopyridine (2 mg) were added. To this mixture, tertbutyldimethylsilyl chloride (10 mmol) was added at $0^{\circ} \mathrm{C}$, and then the resulting mixture was stirred at the same temperature for 1 h . Up on completion, the mixture was quenched with water, extracted with ethyl acetate and the organic layer was dried over sodium sulfate. After removal of the solvent, the residue was
then stirred for 1 h in the presence of 30% formic acid/chloroform solution (25/25 ml). After the completion, the mixture was diluted with water (50 ml), extracted with chloroform and the organic layer was dried over sodium sulfate. The solvent was evaporated under reduced pressure and the residue was purified through column chromatography on silica gel (Hexane/EtOAc $=80 / 20$) to give the 2-(tert-butyldimethylsilanyloxymethyl)-5-hydroxypyrane-4-one (white solid, 94\%(1204.93 mg) of yield).

b) General procedure for the preparation of 2-methyl-5-hydroxypyran-4-(1H)-one ${ }^{(12)}$ (4a)

A mixture of kojic acid (1 mmol) and thionyl chloride (20 mmol) was stirred at room temperature for 30 min . The resulting precipitate was filtered and washed with hexane to give the product (chlorokojic acid, $98 \%(157.33 \mathrm{mg})$ yield) as a white solid, which was then dissolved in 5 ml of distilled water at $50^{\circ} \mathrm{C}$. To this solution were added zinc dust (3 mmol) followed by conc. hydrochloric acid (56.1 mL) over 1 h in dropewise manner under vigorous stirring maintaining the temperature between 70 and $80^{\circ} \mathrm{C}$. The mixture was stirred for another 3 h at 70 ${ }^{\circ} \mathrm{C}$ then the solid was removed by filtration. The filtrate was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic extracts were dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure and the residue was purified through column chromatography on silica gel (Hexane/EtOAc $=40 / 60$) to give the 2-methyl-5-hydroxypyran-4(1H)-one in $74 \%(93.32 \mathrm{mg}$) yield as a white solid.

c) General procedure for the preparation of 2-((4-chlorophenylthio)-methyl)-5-hydroxy-4H-pyran-4-one ${ }^{(2)}$ (4b)

To a stirred solution of chlorokojic acid (3 mmol) and triethylamine (4 mmol) in THF (10 mL) under N_{2} was added 4-chlorobenzenethiol (3.3 mmol). The mixture was stirred for 10 h at room temperature, after which THF was evaporated in vacuo. The residue was extracted with ethyl acetate and washed with water. The organic layer was dried over anhydrous sodium sulfate and the solvent was evaporated under reduced pressure. The resulting residue was purified through column chromatography on silica gel (Hexane/EtOAc $=3 / 7$) to give the (2-((4-
chlorophenylthio)methyl)-5-hydroxy-4H-pyran-4-one, $75 \%(604.59 \mathrm{mg})$ in yield as a white solid.

3. General procedure for preparing thiourea catalysts.

a) Preparation of thiourea II

To a stirred solution of the (1R)-(6-methoxyquinolin-4-yl)(8-vinylquinuclidin-2yl)methanamine ${ }^{(3)}(4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added a solution of glycosyl isothiocyanate ${ }^{(4)}$ (4.4 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ in dropwise manner under N_{2} atmosphere. The resulting mixture was stirred at room temperature until total consumption of the isothiocyanate (monitored by TLC). After removal of the solvent, the residue was purified through column chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{MeOH}=85 / 15$) to give the thiourea catalyst as a white solid.

b) Preparation of thiourea III and VI

To a solution of the corresponding chiral amine (2 mmol) in methylene chloride (8 mL) was added dropwise a solution of dehydroabietic isothiocyanate ${ }^{(5)}$ (2.4 mmol) in methylene chloride (12 mL) under nitrogen atmosphere. The resulting mixture was stirred at room temperature until total consumption of the isothiocyanate (monitored by TLC). After removal of the solvent, the residue was purified through column chromatography on silica gel (Hexane/EtOAc =5/95).

4. Spectral data of thiourea catalysts.

Ligand II

White solid, m.p. $=101-103{ }^{\circ} \mathrm{C}$; Yield: $76 \%(2168.37 \mathrm{mg}) ;[\alpha]_{\mathrm{D}}{ }^{28}=+116.8(c=0.5$, in CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.17-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.75$ (s, 2H), 1.79-1.94 (m, 2H), 1.96-2.14 (m, 14H), 2.65 (brs, 1H), 3.11-3.50 (m, 2H),
3.72-3.86 (m, 1H), 4.03 (s, 3H), 4.08-4.17 (m, 1H), 4.22-4.51 (m, 5H), 4.93-5.13 (m, $2 \mathrm{H}), 5.21-5.50(\mathrm{~m}, 2 \mathrm{H}), 5.70(\mathrm{brs}, 1 \mathrm{H}), 5.86-6.02(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.48$ (d, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{brs}, 1 \mathrm{H}), 7.93-8.02(\mathrm{~m}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.4,20.6,23.2,23.9,24.2,26.4,36.9,46.2,48.6,55.7$, $60.2,61.5,68.0,70.2,73.2,73.3,82.6,101.8,116.7,120.3,122.5,127.7,129.3$, 131.3, 137.3, 142.3, 144.5, 147.3, 158.2, 169.4, 169.8, 169.9, 170.6, 178.9, 184.1. IR (KBr): \cup 2935, 1752, 1622, 1545, 1373, 1227, 1035, 912, 759, $601 \mathrm{~cm}^{-1}$; MS (ESI) $\mathrm{m} / \mathrm{z} 714[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{O}_{10} \mathrm{~N}_{4} \mathrm{~S} 713.28509$. Found: 713.28602.

Ligand III

III
White solid, m.p. $129-131^{\circ} \mathrm{C}$; Yield: $71 \%(924.98 \mathrm{mg}) ;[\alpha]_{D}^{27}=+164.4(c=0.5$, CHCl_{3}). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.54(\mathrm{~s}, 3 \mathrm{H}), 0.81-1.10(\mathrm{~m}, 7 \mathrm{H}), 1.17-1.36(\mathrm{~m}$, $11 \mathrm{H}), 1.37-1.93(\mathrm{~m}, 6 \mathrm{H}), 2.04-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.58-3.07(\mathrm{~m}, 9 \mathrm{H}), 3.22(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, $2 \mathrm{H}), 5.02-5.16(\mathrm{~m}, 2 \mathrm{H}), 5.79-5.96(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10$ (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.31-7.67 (m, 4H), $8.00(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.71(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 18.0,18.2,18.8,23.9,25.1,26.3,27.2,30.1,33.4,35.9,36.9$, $37.2,37.8,38.6,45.9,46.7,48.9,55.5,56.6,114.8,122.6,123.8,124.1,126.7$, 128.6, 131.9, 134.4, 140.2, 144.8, 145.5, 146.8, 147.6, 158.2, 182.1. IR (KBr): v $3372,3067,2930,1711,1620,1552,1378,1235,1028,829,724 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{55} \mathrm{ON}_{4} \mathrm{~S}$: 651.4091, found: 651.4092.

Ligand VI

White solid, m.p. $132-134^{\circ} \mathrm{C}$; Yield: $70 \%(911.96 \mathrm{mg}) ;[\alpha]_{D}{ }^{27}=-69.2\left(c=0.5, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.86(\mathrm{~s}, 3 \mathrm{H}), 1.01-1.36(\mathrm{~m}, 16 \mathrm{H}), 1.43-1.77(\mathrm{~m}, 3 \mathrm{H})$, 1.79-2.00 (m, 5H), 2.13-2.32 (m, 1H), 2.35-3.00 (m, 6H), 3.14-3.91 (m, 4H), $4.01(\mathrm{~s}$, $3 \mathrm{H}), 4.96-5.19(\mathrm{~m}, 2 \mathrm{H}), 5.55-5.74(\mathrm{~m}, 1 \mathrm{H}), 6.18-6.65(\mathrm{~s}, 1 \mathrm{H}), 6.78-6.92(\mathrm{~m}, 1 \mathrm{H})$, 6.97 (d, $J=8.12 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.86-8.08(\mathrm{~m}$, $2 \mathrm{H}), 8.66-8.79(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 18.5,19.1,23.7,23.9,24.8$, $25.2,26.7,29.8,33.3,35.8,36.8,37.2,37.5,37.8,40.9,44.9,53.5,55.2,55.8$, 59.8, 102.1, 116.9, 120.7, 122.3, 123.5, 123.9, 126.5, 127.7, 131.5, 134.7, 137.0, 142.7, 144.8, 145.2, 147.1, 147.5, 158.2, 182.7. IR (KBr): ט 3417, 3069, 2929, 1711, 1620, 1548, 1376, 1236, 1029, 826, $738 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{55} \mathrm{ON}_{4} \mathrm{~S}$: 651.4091, found: 651.4092.

5. General procedure for Michael reaction.

To a stirred solution of organocatalyst II ($5 \mathrm{~mol} \%$) and nitro olefin (2) (0.11 mmol) in i-PrOH (1 mL) at $5{ }^{\circ} \mathrm{C}$ was added 2 -((tert-butyldimethylsilyloxy)-methyl)-5-hydroxy-4H-pyran-4-one (1) (0.1 mmol). The resulting mixture was stirred for 7 h at the same temperature. After completion of the reaction, the mixture was concentrated in vacuo and the resulting residue was purified by column chromatography on silica gel (hexane/EtOAc) to afford the optical pure Michael adduct.

6. Characterization data of all products.

(R)-6-((tert-Butyldimethylsilyloxy)methyl)-3-hydroxy-2-(2-nitro-1-phenylethyl)-4H-pyran-4-one (3a). ${ }^{(6)}$

Brown solid; m.p. $158-159{ }^{\circ} \mathrm{C}\left(\text { Lit. m.p. } 159-160^{\circ} \mathrm{C}\right)^{(6)}$; Yield $97 \% ~(39.33 \mathrm{mg})$; $[\alpha]_{\mathrm{D}}{ }^{27}$ $=+69.2\left(c=0.5, \mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC using a DaicelChiralcel OJ-H column, n-hexane/i-PrOH 90:10, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\text {major }}=10.9$ $\min , \mathrm{t}_{\text {minor }}=17.15 \mathrm{~min}\left(99 \%\right.$ ee); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}$, $9 \mathrm{H}), 4.48$ (s, 2H), 4.90 (dd, J = $6.8,13.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.01-5.11 (m, 1H), 5.20 (dd, J = 9.1, $13.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.6,18.0$, 25.6, 29.6, 43.3, 61.4, 75.4, 108.5, 127.7, 128.5, 129.4, 135.3, 142.0, 146.0, 167.5, 173.9. IR (KBr): v 3251, 2930, 2855, 1652, 1630, 1590, 1551, 1456, 1377, 1252, 1217, 1083, 949, 842, 780, $699 \mathrm{~cm}^{-1}$.
(R)-6-((tert-Butyldimethylsilyloxy)methyl)-2-(1-(4-fluorophenyl)-2-nitroethyl)-3-hydroxy-4H-pyran-4-one (3b). ${ }^{(6)}$

Brown solid; m.p. $153-155^{\circ} \mathrm{C}\left(\text { Lit. m.p. } 154-155{ }^{\circ} \mathrm{C}\right)^{(6)}$; Yield: $98 \%(41.50 \mathrm{mg}) ;[\alpha]_{\mathrm{D}}{ }^{27}$ $=+59.2\left(c=0.5, \mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC using a DaicelChiralcel OJ-H column, n-hexane/i-PrOH 90:10, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\text {major }}=12.8$ $\min , \mathrm{t}_{\text {minor }}=20.2 \mathrm{~min}(96 \% \mathrm{ee}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}$, $9 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 4.89$ (dd, $J=6.8,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-5.10(\mathrm{~m}, 1 \mathrm{H}), 5.16$ (dd, $J=9.1$, $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.40(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.5,18.2,25.6,42.6,61.3,75.3,108.6,116.1,116.4,129.5,131.1$, 142.0, 145.7, 161.0, 164.2, 167.5, 174.0. IR (KBr): v 3251, 2935, 2859, 1630, 1592, 1553, 1511, 1458, 1373, 1242, 1090, 842, $778 \mathrm{~cm}^{-1}$.
(R)-6-((tert-Butyldimethylsilyloxy)methyl)-2-(1-(4-chlorophenyl)-2-nitroethyl)-3-hydroxy-4H-pyran-4-one (3c). ${ }^{(6)}$

Brown solid; m.p. $74-76{ }^{\circ} \mathrm{C}$ (Lit. m.p. $\left.74-75{ }^{\circ} \mathrm{C}\right)^{(6)}$; Yield: $97 \%(42.67 \mathrm{mg}) ;[\alpha]_{\mathrm{D}}{ }^{27}=$ $+68.1\left(c=0.5, \mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC using a DaicelChiralcel $\mathrm{OJ}-\mathrm{H}$ column, n-hexane/i-PrOH 90:10, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\text {major }}=16.7 \mathrm{~min}$, $\mathrm{t}_{\text {minor }}=24.1 \mathrm{~min}(94 \% \mathrm{ee}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H})$, 4.47 (s, 2H), 4.90 (dd, $J=6.8,12.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.00-5.08 (m, 1H), 5.16 (dd, $J=8.3$, $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.39(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.5$, 18.2, 25.6, 42.6, 61.3, 75.1, 108.6, 129.1, 129.5, 133.7, 134.6, 142.0, 145.4, 167.6,
173.9. IR (KBr): v 3250, 2932, 2857, 1629, 1589, 1553, 1457, 1372, 1252, 1220, 1088, $840,780 \mathrm{~cm}^{-1}$.
(R)-2-(1-(4-Bromophenyl)-2-nitroethyl)-6-((tert-butyldimethylsilyloxy)methyl)-3-hydroxy-4H-pyran-4-one (3d). ${ }^{(6)}$

Brown solid; m.p. $135-137^{\circ} \mathrm{C}$ (Lit. m.p. $\left.137-138{ }^{\circ} \mathrm{C}\right)^{(6)}$; Yield: $95 \%(46.01 \mathrm{mg})$; $[\alpha]_{\mathrm{D}}{ }^{27}$ $=+68.1\left(c=0.5, \mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC using a DaicelChiralcel OJ-H column, n-hexane/i-PrOH 95:5, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\text {major }}=40.8$ $\min , \mathrm{t}_{\text {minor }}=54.1 \mathrm{~min}(94 \% \mathrm{ee}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}$, $9 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 4.90(\mathrm{dd}, \mathrm{J}=6.8,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-5.08(\mathrm{~m}, 1 \mathrm{H}), 5.16$ (dd, $J=9.1$, $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.5,18.2,25.6,42.7,61.3,75.0,108.6,108.9,122.7,129.4,132.5$, 134.3, 137.3, 142.0, 145.3, 167.6, 173.9. IR (KBr): v 3237, 2930, 2857, 1653, 1629, $1589,1552,1455,1375,1253,1211,1090,840,780 \mathrm{~cm}^{-1}$.
(R)-6-((tert-Butyldimethylsilyloxy)methyl)-3-hydroxy-2-(2-nitro-1-p-tolylethyl)-4H-pyran-4-one (3e). ${ }^{(6)}$

Brown solid; m.p. $124-126{ }^{\circ} \mathrm{C}$ (Lit. m.p. $\left.123-124{ }^{\circ} \mathrm{C}\right)^{(6)}$; Yield: $90 \% ~(37.75 \mathrm{mg}$); $[\alpha]_{D}{ }^{27}=+111.6\left(c=0.5, \mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC using a DaicelChiralcel OJ-H column, n-hexane/i-PrOH 95:5, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, 254$
$\mathrm{nm} ; \mathrm{t}_{\text {major }}=14.6 \mathrm{~min}, \mathrm{t}_{\text {minor }}=20.1 \mathrm{~min}(91 \% \mathrm{ee}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.11$ (s, 6H), 0.92 (s, 9H), $2.33(\mathrm{~s}, 3 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 4.87$ (dd, $J=6.6,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-$ $5.09(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=9.1,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 7.12-7.34(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.5,18.2,21.0,25.7,43.0,61.4,75.5,108.4,108.8$, $127.6,129.9,132.3,137.1,138.4,141.9,145.5,168.5,174.3$. IR (KBr): ט 3251, 2929, 2855, 1652, 1630, 1589, 1553, 1455, 1378, 1253, 1215, 1081, 843, $782 \mathrm{~cm}^{-1}$.
(R)-6-((tert-Butyldimethylsilyloxy)methyl)-3-hydroxy-2-(1-(4-methoxyphenyl)-2-nitroethyl)-4H-pyran-4-one (3f). ${ }^{(6)}$

Brown solid; m.p. $143-145^{\circ} \mathrm{C}$ (Lit. m.p. $\left.142-143^{\circ} \mathrm{C}\right)^{(6)}$; Yield: $95 \%(41.37 \mathrm{mg}) ;[\alpha]_{\mathrm{D}}{ }^{27}$ $=+118.6\left(c=0.5, \mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC using a DaicelChiralcel OJ-H column, n-hexane/i-PrOH 90:10, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\text {major }}=19.9$ $\mathrm{min}, \mathrm{t}_{\text {minor }}=30.8 \mathrm{~min}\left(91 \%\right.$ ee); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}$, $9 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 4.86(\mathrm{dd}, \mathrm{J}=6.6,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-5.04(\mathrm{~m}, 1 \mathrm{H})$, 5.16 (dd, $J=8.9,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 6.88$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.5,18.1,25.6,42.6,55.2,61.3,75.5,108.5$, 108.9, 114.6, 127.2, 128.9, 137.3, 141.8, 145.5, 146.3, 159.6, 167.4, 168.5, 173.9. IR (KBr): v 3244, 2953, 2931, 2855, 1655, 1630, 1592, 1548, 1513, 1456, 1374, 1253, 1229, 1084, 839, $778 \mathrm{~cm}^{-1}$.
(R)-6-((tert-Butyldimethylsilyloxy)methyl)-2-(1-(3-fluorophenyl)-2-nitroethyl)-3-hydroxy-4H-pyran-4-one (3g).

Brown solid; m.p. $139-141{ }^{\circ} \mathrm{C}$; Yield: $96 \% ~\left(40.65 \mathrm{mg}\right.$); $[\alpha]_{\mathrm{D}}{ }^{27}=+42.6(c=0.5$, $\left.\mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC using a DaicelChiralcel OJ-H column, n-hexane/i- PrOH 90:10, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\text {major }}=14.2 \mathrm{~min}, \mathrm{t}_{\text {minor }}=$ $22.1 \mathrm{~min}(85 \% \mathrm{ee}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 4.49(\mathrm{~s}$, $2 \mathrm{H}), 4.91$ (dd, $J=6.8,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-5.11(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=9.1,12.8 \mathrm{~Hz}$, 1H), $6.51(\mathrm{~s}, 1 \mathrm{H}), 6.98-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.39(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $-5.5,25.6,42.8,61.3,75.0,108.6,114.7,115.5,123.5,130.8,137.5,142.2,145.3$, 164.6, 167.6, 174.0. IR (KBr): ט 3256, 2955, 2932, 2858, 1653, 1630, 1590, 1552, 1451, 1378, 1251, 1085, 841, 781, $704 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{6}$ FNSi: 424.1586, found: 424.1575.
(R)-6-((tert-Butyldimethylsilyloxy)methyl)-2-(1-(3-chlorophenyl)-2-nitroethyl)-3-hydroxy-4H-pyran-4-one (3h).

Brown solid; m.p. $128-130{ }^{\circ} \mathrm{C}$; Yield: $95 \%(41.79 \mathrm{mg}) ;[\alpha]_{\mathrm{D}}{ }^{27}=+58.6$ ($c=0.5$, CHCl_{3}). The ee was determined by HPLC using a DaicelChiralcel OJ-H column, n-hexane/i-PrOH 90:10, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\text {major }}=13.8 \mathrm{~min}, \mathrm{t}_{\text {minor }}=$ $28.1 \mathrm{~min}(88 \% \mathrm{ee}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 4.49(\mathrm{~s}$, 2 H), 4.90 (dd, $J=6.8,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-5.07(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.23(\mathrm{~m}, 1 \mathrm{H}), 6.52(\mathrm{~s}$, 1H), 7.21-7.37 (m, 5H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.5,18.1,25.7,42.9,61.4$, 75.0, 108.6, 125.9, 127.9, 128.8, 130.5, 135.1, 137.2, 142.0, 145.1, 167.7, 173.9. IR (KBr): v 3251, 2953, 2930, 2857, 1653, 1629, 1590, 1552, 1456, 1375, 1252, 1213,

1086, $841,781,686 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{6} \mathrm{CINSi}$: 440.1290, found: 440.1290.
(R)-6-((tert-Butyldimethylsilyloxy)methyl)-2-(1-(2-fluorophenyl)-2-nitroethyl)-3-hydroxy-4H-pyran-4-one (3i).

Brown solid; m.p. $114-116{ }^{\circ} \mathrm{C}$; Yield: $99 \%(41.92 \mathrm{mg}) ;[\alpha]_{\mathrm{D}}{ }^{27}=+64.2(c=0.5$, CHCl_{3}). The ee was determined by HPLC using a DaicelChiralcel OJ-H column, n -hexane/i-PrOH 90:10, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\text {major }}=9.9 \mathrm{~min}, \mathrm{t}_{\text {minor }}=15.1$ $\min (95 \% ~ e e) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H})$, 4.90 (dd, $J=7.5,13.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.18-5.29 (m, 1H), 5.31-5.40 (m, 1H), $6.53(\mathrm{~s}, 1 \mathrm{H})$, 7.05-7.19 (m, 2H), 7.28-7.40 (m, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.5,18.2,25.6$, 37.6, 61.3, 73.9, 108.4, 116.1, 116.3, 122.0, 122.2, 129.5, 130.3, 130.4, 142.4, 144.6, 159.4, 161.3, 167.8, 173.9. IR (KBr): v 3255, 2928, 2854, 1652, 1631, 1592, 1550, 1456, 1374, 1253, 1228, 1080, 952, 842, $748,754,683 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{6} \mathrm{FNSi}: 424.1586$, found: 424.1602 .
(R)-6-((tert-Butyldimethylsilyloxy)methyl)-2-(1-(2-chlorophenyl)-2-nitroethyl)-3-hydroxy-4H-pyran-4-one (3j). ${ }^{(6)}$

Brown solid; m.p. $72-74{ }^{\circ} \mathrm{C}$ (Lit. m.p. $71-72{ }^{\circ} \mathrm{C}$) ${ }^{(6)}$; Yield: $98 \%(43.11 \mathrm{mg}) ;[\alpha]_{\mathrm{D}}{ }^{27}=$ $+78.1\left(c=0.5, \mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC using a DaicelChiralcel OJH column, n-hexane/i-PrOH 95:5, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\text {major }}=13.6 \mathrm{~min}$, $\mathrm{t}_{\text {minor }}=22.7 \mathrm{~min}(88 \% \mathrm{ee}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H})$,
4.41-4.55 (m, 2H), $4.84(\mathrm{dd}, J=5.7,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=10.2,14.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.55 (dd, J = 5.7, 10.2 Hz, 1H), $6.53(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.49(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.5,18.2,25.7,40.7,61.4,73.7,108.5,127.6,128.9$, 129.8, 130.4, 132.8, 133.8, 142.7, 144.8, 167.8, 173.9. IR (KBr): ט 3230, 2954, $2931,2857,1660,1632,1554,1459,1317,1254,1230,1139,843,778,685 \mathrm{~cm}^{-1}$.
(R)-2-(1-(2-Bromophenyl)-2-nitroethyl)-6-((tert-butyldimethylsilyloxy)methyl)-3-hydroxy-4H-pyran-4-one (3k). ${ }^{(6)}$

Brown solid; m.p. $60-62{ }^{\circ} \mathrm{C}$ (Lit. m.p. $\left.59-60{ }^{\circ} \mathrm{C}\right)^{(6)}$; Yield: $96 \%(46.50 \mathrm{mg}) ;[\alpha]_{\mathrm{D}}{ }^{27}=$ $+112.4\left(c=0.5, \mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC using a DaicelChiralcel OJH column, n-hexane $/ \mathrm{i}-\mathrm{PrOH} 90: 10$, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\text {major }}=9.4$ $\mathrm{min}, \mathrm{t}_{\text {minor }}=14.8 \mathrm{~min}\left(91 \%\right.$ ee); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}$, $9 \mathrm{H}), 4.40-4.56(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{dd}, J=5.5,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=10.4,14.2 \mathrm{~Hz}$, 1H), 5.55 (dd, J = 5.5, $10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.53 (s, 1H), 7.16-7.37 (m, 4H), 7.64 (dd, J = 8.3 $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.5,18.1,25.6,43.2,61.3,73.7,108.4,124.2$, 128.3, 128.9, 130.0, 133.7, 134.4, 142.7, 144.9, 167.9, 173.9. IR (KBr): ט 3239, 2935, 2861, 1659, 1631, 1591, 1552, 1457, 1251, 1217, 1093, 847, $778 \mathrm{~cm}^{-1}$.
(R)-6-((tert-Butyldimethylsilyloxy)methyl)-3-hydroxy-2-(1-(2-methoxyphenyl)-2-nitroethyl)-4H-pyran-4-one (31).

Brown solid; m.p. $110-112{ }^{\circ} \mathrm{C}$; Yield: 97% (42.24 mg); $[\alpha]_{\mathrm{D}}{ }^{27}=+107.2$ ($c=0.5$, CHCl_{3}). The ee was determined by HPLC using a DaicelChiralcel OJ-H column, n-
hexane/i-PrOH 90:10, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\text {major }}=10.1 \mathrm{~min}, \mathrm{t}_{\text {minor }}=$ $16.8 \mathrm{~min}(88 \% \mathrm{ee}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 3.88(\mathrm{~s}$, $3 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 4.77-4.87(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.21(\mathrm{~m}, 1 \mathrm{H}), 5.44$ (dd, $J=5.3,10.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.87-7.01(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.39(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.5,18.2,25.7,38.1,55.6,61.4,74.0,108.1,111.0,121.0$, 123.3, 127.0, 128.6, 129.6, 132.1, 134.4, 146.3, 156.6, 167.4, 174.6. IR (KBr): u 3265, 2953, 2931, 2858, 1650, 1615, 1558, 1462, 1318, 1250, 1204, 1141, 1027, 841, $784,756 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{7}$ NSi: 436.1786, found: 436.1792.

(R)-6-((tert-Butyldimethylsilyloxy)methyl)-3-hydroxy-2-(1-(naphthalen-2-yl)-2-nitroethyl)-4H-pyran-4-one (3m)

Brown solid; m.p. $116-118{ }^{\circ} \mathrm{C}$; Yield: $93 \% ~\left(42.36 \mathrm{mg}\right.$); $[\alpha]_{\mathrm{D}}{ }^{27}=+57.4(c=0.5$, CHCl_{3}). The ee was determined by HPLC using a DaicelChiralcel OJ-H column, n -hexane/i-PrOH 90:10, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\text {major }}=28.6 \mathrm{~min}, \mathrm{t}_{\text {minor }}=$ $52.3 \mathrm{~min}(91 \% \mathrm{ee}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 4.48(\mathrm{~s}$, $2 \mathrm{H}), 5.02$ (dd, $J=6.0,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.37(\mathrm{~m}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.56(\mathrm{~m}$, $3 \mathrm{H}), 7.74-7.88(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.5,18.2,25.7,43.6,61.4$, $75.3,108.5,125.0,126.7,127.0,127.7,127.9,129.3,132.7,133.0,133.3,137.2$, 142.1, 145.6, 145.8, 167.6, 173.9. IR (KBr): v 3237, 2952, 2930, 2856, 1653, 1627, 1589, 1549, 1455, 1374, 1253, 1209, 1086, 948, 841, 780, $743 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{NSi:} \mathrm{456.1836}, \mathrm{found:} \mathrm{456.1841}$.
(R)-2-(1-(2-(Benzyloxy)phenyl)-2-nitroethyl)-6-((tert-butyldimethylsilyloxy)methyl)-3-hydroxy-4H-pyran-4-one (3n).

Brown solid; m.p. $144-146{ }^{\circ} \mathrm{C}$; Yield: 92% (47.12 mg); $[\alpha]_{\mathrm{D}}{ }^{27}=+78.2$ ($c=0.5$, CHCl_{3}). The ee was determined by HPLC using a DaicelChiralcel OJ-H column, n-hexane/i-PrOH 98:2, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\text {major }}=71.4 \mathrm{~min}, \mathrm{t}_{\text {minor }}=88.4$ $\min \left(84 \%\right.$ ee); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.09(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H})$, 4.84 (dd, J = 5.3, 13.6 Hz, 1H), 5.01-5.24 (m, 3H), 5.47 (dd, J = 5.3, $9.8 \mathrm{~Hz}, 1 \mathrm{H}$), $6.50(\mathrm{~s}, 1 \mathrm{H}), 6.87-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.49(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-$ $5.5,18.1,25.6,38.4,61.1,70.3,73.9,108.1,112.3,121.3,123.4,127.3,128.7$, 129.0, 129.7, 136.2, 142.5, 145.9, 145.8, 155.8, 167.6, 173.9. IR (KBr): ט 3274, 2928, 2853, 1650, 1616, 1581, 1554, 1495, 1459, 1326, 1243, 1123, 1013, 843, $782,752,693 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{7}$ NSi: 512.2099, found: 512.2091.

(R)-6-((tert-Butyldimethylsilyloxy)methyl)-2-(1-(2,4-dichlorophenyl)-2-

 nitroethyl)-3-hydroxy-4H-pyran-4-one (30). ${ }^{(6)}$

Brown solid; m.p. $52-54{ }^{\circ} \mathrm{C}$ (Lit. m.p. $\left.51-52^{\circ} \mathrm{C}\right)^{(6)}$ Yield: $95 \%(45.06 \mathrm{mg}) ;[\alpha]_{\mathrm{D}}{ }^{27}=$ +56.2 ($c=0.5, \mathrm{CHCl}_{3}$). The ee was determined by HPLC using a DaicelChiralcel OJH column, n-hexane/i-PrOH 95:5, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\text {major }}=13.6$ $\mathrm{min}, \mathrm{t}_{\text {minor }}=22.8 \mathrm{~min}(87 \% \mathrm{ee}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}$, 9H), 4.39-4.55 (m, 2H), 4.84 (dd, J = 5.8, 14.2 Hz, 1H), 5.14-5.26 (m, 1H), 5.55 (dd, $J=5.7,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.49(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.5,18.2,25.6,40.6,61.3,73.6,108.4,127.6,128.9,129.8,130.3$,
132.7, 133.7, 142.7, 144.8, 167.9, 173.9. IR (KBr): ט 3230, 2931, 2858, 1633, 1555, $1463,1318,1229,1138,844,779 \mathrm{~cm}^{-1}$.
(R)-6-((tert-Butyldimethylsilyloxy)methyl)-2-(1-(3,4-dichlorophenyl)-2-nitroethyl)-3-hydroxy-4H-pyran-4-one (3p).

Brown solid; m.p. $116-118^{\circ} \mathrm{C}$; Yield: $94 \%(44.59 \mathrm{mg}) ;[\alpha]_{D}^{27}=+59.1\left(c=0.5, \mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC using a DaicelChiralcel OJ-H column, n-hexane/iPrOH 90:10, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\text {major }}=16.1 \mathrm{~min}, \mathrm{t}_{\text {minor }}=31.6 \mathrm{~min}$ (91% ee); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 4.44-4.53(\mathrm{~m}$, 2 H), 4.91 (dd, $J=6.0,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-5.07(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{dd}, J=8.3,12.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.48(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $-5.4,18.2,25.7,42.5,61.4,74.8,108.7,127.1,129.8,131.3,133.1,133.5,135.4$, 142.1, 144.8, 167.8, 173.8. IR (KBr): v 3250, 2953, 2857, 1656, 1629, 1548, 1456, 1369, 1252, 1229, 1092, $840,781 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{NCl}_{2} \mathrm{Si}$: 474.0901, found: 474.0919.
(R)-6-((tert-Butyldimethylsilyloxy)methyl)-2-(1-(3,5-dimethylphenyl)-2-nitroethyl)-3-hydroxy-4H-pyran-4-one (3q).

Brown solid; m.p. $96-98^{\circ} \mathrm{C}$; Yield: $90 \%(39.07 \mathrm{mg}) ;[\alpha]_{\mathrm{D}}{ }^{27}=+96.4\left(c=0.5, \mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC using a DaicelChiralcel OJ-H column, n-hexane/iPrOH 95:05, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\text {major }}=9.9 \mathrm{~min}, \mathrm{t}_{\text {minor }}=12.7 \mathrm{~min}(95 \%$
ee); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H}), 4.48(\mathrm{~s}$, $2 \mathrm{H}), 4.86(\mathrm{dd}, J=6.8,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-5.04(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.25(\mathrm{~m}, 1 \mathrm{H}), 6.52(\mathrm{~s}$, $1 \mathrm{H}), 6.87-6.99(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.5,21.3,25.7,43.3,61.4$, $75.3,108.4,125.4,130.2,135.2,138.9,141.9,146.1,167.5,173.9$. IR (KBr): v $3273,2931,2858,1626,1589,1557,1460,1374,1253,1127,841,781,712 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{NSi}: 434.1993$, found: 434.2000.
(R)-6-((tert-Butyldimethylsilyloxy)methyl)-2-(1-(furan-2-yl)-2-nitroethyl)-3-hydroxy-4H-pyran-4-one (3r).

Brown solid; m.p. $102-104{ }^{\circ} \mathrm{C}$; Yield: 94\% (37.23 mg); $[\alpha]_{D}{ }^{27}=+86.3$ (c = 0.5, CHCl_{3}). The ee was determined by HPLC using a DaicelChiralcel OJ-H column, nhexane $/ \mathrm{i}-\mathrm{PrOH} 98: 2$, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\text {major }}=37.6 \mathrm{~min}, \mathrm{t}_{\text {minor }}=46.0$ $\min \left(95 \%\right.$ ee); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.12(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H})$, 4.92-5.13 (m, 2H), 5.21-5.30 (m, 1H), 6.22-6.30 (m, 1H), 6.31-6.39 (m, 1H), $6.54(\mathrm{~s}$, $3 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.5,18.2,25.7,29.7,37.1,61.3$, $73.4,108.4,108.6,110.7,142.9,143.7,147.5,167.8,174.1$. IR (KBr): v 3250, 2958, 2931, 2855, 1652, 1630, 1590, 1554, 1458, 1375, 1254, 1220, 1083, 1011, 842, 782, $734,682 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{7} \mathrm{NSi}: 396.1473$, found: 396.1487.
(R)-6-((tert-Butyldimethylsilyloxy)methyl)-3-hydroxy-2-(2-nitro-1-(thiophen-2yl)ethyl)-4H-pyran-4-one (3s). ${ }^{(6)}$

Brown solid; m.p. $128-130{ }^{\circ} \mathrm{C}$ (Lit. m.p. $\left.128-129{ }^{\circ} \mathrm{C}\right)^{(6)}$ Yield: $85 \%(34.97 \mathrm{mg})$; $[\alpha]_{\mathrm{D}}{ }^{27}$ $=+76.7$ ($c=0.5, \mathrm{CHCl}_{3}$). The ee was determined by HPLC using a DaicelChiralcel OJ-H column, n-hexane/i-PrOH 90:10, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\text {major }}=12.9$ $\min , \mathrm{t}_{\text {minor }}=17.5 \mathrm{~min}(92 \% \mathrm{ee}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}$, $9 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 4.91(\mathrm{dd}, J=6.98,13.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.07-5.20(\mathrm{~m}, 1 \mathrm{H}), 5.37-5.47(\mathrm{~m}$, $1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.95-7.01(\mathrm{~m}, 1 \mathrm{H}), 7.03-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.33(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.5,25.7,38.3,61.3,75.8,108.6,125.9,126.7,127.2$, 128.5, 128.9, 129.1, 136.3, 137.4, 141.8, 144.8, 167.7, 174.0. IR (KBr): v 3237, 2930, 2856, 1630, 1589, 1552, 1458, 1373, 1253, 1080, 841, 780, $696 \mathrm{~cm}^{-1}$.

(S)-6-((tert-Butyldimethylsilyloxy)methyl)-3-hydroxy-2-(1-nitropentan-2-yl)-4H-

 pyran-4-one (3t).

White solid; m.p. $111-113^{\circ} \mathrm{C}$; Yield: 90% (33.49 mg); $[\alpha]_{D}{ }^{27}=-96.7\left(c=0.5, \mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC using a DaicelChiralcel OJ-H column, n-hexane/i$\operatorname{PrOH} 99: 01$, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\text {minor }}=33.0 \mathrm{~min}, \mathrm{t}_{\text {major }}=36.8 \mathrm{~min}$ (89% ee); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.12(\mathrm{~s}, 6 \mathrm{H}), 0.83-1.01(\mathrm{~m}, 12 \mathrm{H}), 1.21-1.42$ $(\mathrm{m}, 2 \mathrm{H}), 1.53-1.86(\mathrm{~m}, 2 \mathrm{H}), 3.78-3.92(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 4.58(\mathrm{dd}, J=6.20,12.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.69-4.81(\mathrm{~m}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.5,13.6$, $18.2,19.9,25.6,31.6,37.7,61.3,75.9,108.4,142.9,146.9,167.4,174.0$ IR (KBr): v 3256, 2957, 2933, 2860, 1660, 1628, 1592, 1552, 1464, 1322, 1230, 1135, 844, $781,678 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{NSi}$: 372.1836 , found: 372.1836 .
(R)-3-Hydroxy-6-methyl-2-(2-nitro-1-phenylethyl)-4H-pyran-4-one (5a).

Brown solid; m.p. $120-122^{\circ} \mathrm{C}$; Yield: $96 \%(26.50 \mathrm{mg}) ;[\alpha]_{D}{ }^{27}=+36.6\left(c=0.5, \mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC using a DaicelChiralcel OJ-H column, n-hexane/iPrOH 90:10, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\text {major }}=21.7 \mathrm{~min}, \mathrm{t}_{\text {minor }}=44.5 \mathrm{~min}$ (95% ee); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 2.30(\mathrm{~s}, 3 \mathrm{H}), 4.91$ (dd, $J=6.7,13.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.05-5.27 (m, 2H), 6.24 (s, 1H), 7.28-7.48 (m, 5H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 20.0, 29.2, 43.1, 75.5, 110.6, 127.8, 128.4, 129.2, 135.5, 142.6, 146.7, 160.4, 165.5, 174.6. IR (KBr): v 3213, 2923, 1650, 1625, 1559, 1451, 1376, 1335, 1207, 952, 863, 769, $703 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{~N}$: 276.0866, found: 276.0870.

(R)-6-((4-Chlorophenylthio)methyl)-3-hydroxy-2-(2-nitro-1-phenylethyl)-4H-pyran-4-one (5b).

Semi solid; Yield: $95 \%(39.71 \mathrm{mg}) ;[\alpha]_{D}{ }^{27}=+22.7\left(c=0.5, \mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC using a DaicelChiralcel OJ-H column, n-hexane/i-PrOH 70:30, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$; $\mathrm{t}_{\text {major }}=36.4 \mathrm{~min}, \mathrm{t}_{\text {minor }}=56.8 \mathrm{~min}(97 \% \mathrm{ee})$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.83(\mathrm{~s}, 2 \mathrm{H}), 4.83(\mathrm{~J}=6.1,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-5.07(\mathrm{~m}$, $1 \mathrm{H}), 5.08-5.16(\mathrm{~m}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 7.16-7.40(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 25.3,29.6,37.4,42.9,75.1,111.2,127.7,128.5,129.3,129.5,131.5,133.1$, 134.4, 135.1, 142.0, 146.8, 163.7, 173.5. IR (KBr): v 3240, 2924, 2853, 1624, 1554, 1475, 1450, 1375, 1335, 1209, 1094, 1011, 818, $700 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{NClS}: 418.0510$, found: 418.0525 .

7. Copy of ${ }^{1} \mathrm{HNMR}$ and ${ }^{13} \mathrm{C}$ NMR of ligands.

8. Copy of ${ }^{1} \mathrm{HNMR}$ and ${ }^{13} \mathrm{C}$ NMR of all products.

(1)

9. HPLC diagram of all compounds.

1 Det.A Ch $1 / 254 \mathrm{~nm}$
PeakTable

mV

Det.A Ch1/254nm
PeakTable

Peak	Ret. Time	Area	Height	Area \%	Height \%
1	13.166	17079845	273598	51.353	61.528
2	19.809	16180054	171071	48.647	38.472
Total		33259898	444669	100.000	100.000

mV

1 Det.A Ch1/254nm

Detector A Ch1 254nm PeakTable					
Peak ${ }^{\text {\# }}$	Ret. Time	Area	Height	Area \%	Height \%
1	16.666	14065716	147057	95.167	95.470
2	24.093	714290	6978	4.833	4.530
Total		14780007	154035	100.000	100.000

mV

1 Det.ACh $1 / 254 \mathrm{~nm}$
PeakTable
Detector A Ch1 254nm

Peak	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	40.846	12913522	57130	96.954	96.588
2	54.171	405664	2018	3.046	3.412
Total		13319186	59148	100.000	100.000

mV

1 Det.A Ch $1 / 254 \mathrm{~nm}$
PeakTable
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	15.267	7717414	99502	49.833	54.202
2	19.322	7769106	84075	50.167	45.798
Total		15486521	183577	100.000	100.000

$\mathrm{m} V$

1 Det.A Ch $1 / 254 \mathrm{~nm}$

PeakTable

Detector A Ch1 254 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	14.605	66566652	911047	95.522	95.904
2	20.130	3120252	38915	4.478	4.096
Total		69686904	949962	100.000	100.000

mV

1 Det.A Ch $1 / 254$ nm
Detector A Ch1 254nm

PeakTable					
Peak\#	Ret. Time	Area	Height	Area $\%$	Height \%
1	19.936	19562367	178217	95.481	96.344
2	30.857	925940	6762	4.519	3.656
Total		20488307	184980	100.000	100.000

<Chromatogram>
mV

1 Det.A Ch1/254nm
PeakTable
Detector A Ch1 254 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	13.956	4087366	76721	50.334	64.574
2	20.818	4033055	42089	49.666	35.426
Total		8120421	118810	100.000	100.000

Electronic Supplementary Material (ESI) for RSC Advances

1 Det.A Ch $1 / 254 \mathrm{~nm}$
Detector A Ch1 254 nm

	PeakTable				
Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	9.941	4772303	140365	50.021	66.716
2	14.717	4768283	70028	49.979	33.284
Total		9540586	210393	100.000	100.000

PeakTable
Detector A Ch1 254 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	9.910	7705697	176374	97.449	98.718
2	15.159	201720	2290	2.551	1.282
Total		7907417	178664	100.000	100.000

Electronic Supplementary Material (ESI) for RSC Advances

1 Det.A Ch1/254nm
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height \%
1	13.622	15376982	283193	93.976	96.286
2	22.715	985601	10924	6.024	3.714
Total		16362583	294117	100.000	100.000

Electronic Supplementary Material (ESI) for RSC Advances

mV

1 Det.A Ch $1 / 254 \mathrm{~nm}$
Detector A Ch1 254nm

PeakTable					
Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	71.411	27566779	73671	92.156	93.140
2	88.358	2346436	5426	7.844	6.860
Total		29913215	79097	100.000	100.000

Electronic Supplementary Material (ESI) for RSC Advances

mV

1 Det.A Ch $1 / 254 \mathrm{~nm}$
Detector A Ch1 254 nm

PeakTable					
Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	15.191	8924532	97265	51.869	64.130
2	23.547	8281232	54405	48.131	35.870
Total		17205764	151670	100.000	100.000

mV

1 Det.A Ch $1 / 254 n m$
PeakTable
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	13.587	28696217	516328	93.694	96.383
2	22.849	1931408	19378	6.306	3.617
Total		30627625	535707	100.000	100.000

1 Det.A Ch1/254nm
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	17.202	4491214	45853	50.890	70.195
2	32.631	4334138	19469	49.110	29.805
Total		8825352	65321	100.000	100.000

1 Det.A Ch $1 / 254 \mathrm{~nm}$
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	9.988	20919974	480382	97.680	98.385
2	12.710	496883	7888	2.320	1.615
Total		21416857	488270	100.000	100.000

mV

1 Det.A Ch1/254nm
Detector A Ch1 254 nm

PeakTable					
Peak\#	Ret. Time	Area	Height	Area $\%$	Height \%
1	10.024	11805148	268282	49.646	64.574
2	12.323	11973717	147180	50.354	35.426
Total		23778865	415462	100.000	100.000

mV

1 Det.A Ch $1 / 254 \mathrm{~nm}$
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	12.820	9109107	202352	50.715	59.845
2	16.803	8852174	135773	49.285	40.155
Total		17961281	338124	100.000	100.000

mV

1 Det.A Ch $1 / 254 \mathrm{~nm}$
Detector A Ch1 254 nm

Peak\# PeakTable					
1	Ret. Time	Area	Height	Area \%	Height \%
2	32.504	5012038	41584	52.046	58.877
Total	38.077	4618052	29045	47.954	41.123

mV

1 Det.A Ch1/254nm
Detector A Ch1 254 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height \%
1	33.004	281195	2901	5.581	7.532
2	36.802	4757648	35613	94.419	92.468
Total		5038843	38514	100.000	100.000

Electronic Supplementary Material (ESI) for RSC Advances

1 Det.A Ch1/254nm
Detector A Ch1 254nm

Peak\# PeakTable					
1	Ret. Time	Area	Height	Area \%	Height \%
2	21.964	5519131	33412	53.996	63.539
Total	43.094	4702250	19174	46.004	36.461

mV

1 Det.A Ch $1 / 254 \mathrm{~nm}$
Detector A Ch1 254 nm

PeakTable					
Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	21.666	10449672	78898	97.432	98.552
2	44.536	275421	1159	2.568	1.448
Total		10725093	80058	100.000	100.000

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Area\%
1	38.989	6022358	25088	49.093
2	55.046	6244813	18761	50.907
Total		12267170	43848	

10. References.

(1) (a) Y. Ma, W. Luo, P. J. Quinn, Z. D. Liuand, R. C. Hider, J. Med. Chem. 2004, 47, 6349; (b) J. Farard, C. Logé, B. Pfeiffer, B. Lesur and M. Duflos, Tetrahedron Lett. 2009, 50, 5729.
(2) H. S. Rho, D. S. Yoo, S. M. Ahn, M. K. Kim, D. H. Cho and J. Y. Cho, Bull. Korean Chem. Soc. 2010, 31, 3463.
(3) (a) B. Vakulya, S. Varga, A. Csampai, T. Soos, Org. Lett, 2005, 7, 1967; (b) S. H. McCooey, S. J. Connon, Angew Chem. Int. Ed. 2005, 44, 6367.
(4) (a) T. Lindhorst, C. Kieburg, Synthesis. 1995, 10, 1228; (b) M. Selkti, R. Kassab, H. P. Lopez, F. Villain, C. J. deRango, Carbohydr. Chem. 1999, 18, 1019.
(5) X. Jiang, Y. Zhang, L. Wu, G. Zhang, X. Liu, H. Zhang, D. Fu, R. Wanga, Adv. Synth. Catal. 2009, 351, 2096.
(6) J. Wang, Q. Zhang, H. Zhang, Y. Feng, W. Yuana, X. Zhang, Org. Biomol. Chem. 2012, 10, 2950.

