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Figure S1. The powder X-ray diffraction pattern of the precursors with different morphologies. 

Figure S2. STEM-EDS mapping of the nanoparticles synthesized by forced-hydrolysis method.



Figure S3. EDS point analysis of the secondary phases dispersed on the fractured surface of (a) Platelet(⊥p) surface, 

(b) Platelet(║ p) surface, (c) Rod(⊥p) surface, (d) Rod(║ p) surface, and (e) Nanoparticle.

Figure S4. Temperature dependence of thermal diffusivity of the sintered samples measured by LFA.



Figure S5. Temperature denpendence of the specific heat at constant pressure measured by DSC.

Calculations of The lower limit of thermal conductivity κmin

The lower limit of thermal conductivity min for Zn0.98Al0.02O was calculated by taking the high-

temperature limit of the thermal conductivity calculated by Cahill et al1 for amorphous material 

with an average volume per atom given by V.
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where kB is Boltzmann constant, vt and vl are transverse and longitudinal speed of sound. From 

the speed of sound measurements, vt here equals 2750 m·s-1, and vl equals 5940 m·s-1. Thus the 

min was calculated to be 1.22 W·m-1·K-1 as shown in Figure 8 in the main article.

Calculations of The lattice thermal conductivity κL

The lattice thermal conductivity is calculated using Debye-Callaway model2,3 as follows:
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where kB is Boltzmann constant, v is the speed of sound, ħ is reduced Planck’s constant, x is the 

normalized frequency ħω/kBT, T is the absolute temperature, θ is the Debye temperature of 

Zn0.98Al0.02O. τc is the combine relaxation time using Matthiessen’s rule as follows:
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where τc is composed of point defect scattering τpd, normal phonon-phonon scattering τN, 

boundary scattering τB, and nano-particle scattering τD. The relaxation time for these scattering 

mechanisms is calculated from the following relations:
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where A, B, α and β are scattering strength related parameters, ω is phonon frequency, L is the 

average grain size values. According to Majumdar’s heat transfer theory,4,5 when the particle size 

is small enough, the scattering cross section obeys Rayleigh law, which varies as frequency to 

the fourth power. Thus the relaxation time for nanonuclei scattering, τD, should be calculated as:
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where η is concentration (m-3). d is the mean nano-particle size. As the size of nano-particle 

increases, the scattering cross section is near geometric and phonon frequency independent, 

which is σ(geometric) ~ π(d/2)2 . Thus the relaxation time for nanonuclei scattering, τD, should be 

calculated as:
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The values used for the calculations are listed in the following Table S1.

Table S1

An overview of the parameters used in Callaway calculations

Calculation #1 #2 #3 #4 #5

Sample Rod (⊥p) Rod ( ║p) Plate (⊥p) Plate ( ║p) Nano

θ/K 400 400 400 400 400

v/ms-1 3097 3097 3097 3097 3097

α/K-4s-1 420 420 400 400 100

β/K-5s-1 0.015 0.015 0.015 0.015 0.015

L/m 1× 10-5 2× 10-6 6× 10-7 1.5× 10-7 4× 10-7

η(geometric)/m-3 1.2× 1017 1.2× 1017 1× 1019 1× 1019

d(geometric)/m 3× 10-7 3× 10-7 3× 10-8 3× 10-8

η(Rayleigh)/m-3 1.4× 1020

d(Rayleigh)/m 1× 10-8
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