Electronic Supplementary Information (ESI) for

Catalyst-free domino reaction in water/ethanol: An efficient, regio- and chemoselective one-pot multi-component synthesis of pyranopyrazole derivatives

Majid Koohshari, ${ }^{\text {a }}$ Minoo Dabiri ${ }^{*{ }^{* a}}$ and Peyman Salehi ${ }^{* b}$

${ }^{\text {a D Department of Chemistry, Faculty of Science, Shahid Beheshti University, G. C., Evin, Tehran }}$ 1983963113, Iran.

Email: m-dabiri@sbu.ac.ir
${ }^{\mathrm{b}}$ Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran.

Email: p-salehi@sbu.ac.ir

TABLE OF CONTENTS

Contents	Page
General Information	S3
General Procedures for the Synthesis of pyrazolonopyridine.	S3
Characterization of the Products	S4- S9
Crystallographic data	S10
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra	S11- S22

General Information

All starting materials were obtained from Merck or Fluka, and were used without further purification. Melting points were determined on an Electrothermal 9100 apparatus and were not corrected. IR spectra were obtained as potassium bromide pellets with a BOMEM-MB-series FT-IR spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker-DRX-300-Avance spectrometer at and 300 and 75 MHz , respectively, in DMSO and in the presence of TMS as internal standard. HR-ESIMS spectra were acquired on a Bruker MicroTOF ESI-MS system. Elemental analyses were performed using a Heraeus CHN-O Rapid analyzer.

General procedure for the synthesis of 5: A mixture of the hydrazine hydrate (2,1 mmol, 0.05 mL) and dialkyl-3-oxopentanedioate ($\mathbf{1}, 1 \mathrm{mmol}$) in water/ethanol ($10 \mathrm{~mL} / 8: 2$) was magnetically stirred for 30 min at $60^{\circ} \mathrm{C}$ followed by the addition of aldehyde (3,1 mmol) and malononitril (4, 1 mmol). The reaction mixture was stirred for 12 h at $60^{\circ} \mathrm{C}$. Then, the mixture was cooled to r.t. and 10 ml of water was added and the resulting mixture was stirred for 30 min . The precipitated product was filtered, washed with water. The products were further purified by recrystallization in ethanol.

Typical procedure for the synthesis of ethyl 2-(6-amino-4-(4-chlorophenyl)-5-cyano-2,4-dihydropyrano[2,3-c]pyrazol-3-yl)acetate (5a): A mixture of the hydrazine hydrate (1 mmol , 0.05 mL) and diethyl-3-oxopentanedioate ($1 \mathrm{mmol}, 0.18 \mathrm{~mL}$) in water/ethanol ($10 \mathrm{~mL} / 8: 2$) was magnetically stirred for 30 min at $60^{\circ} \mathrm{C}$ followed by the addition of 4-chlorobenzaldehyde (1 $\mathrm{mmol}, 0.14 \mathrm{~g})$ and malononitril ($1 \mathrm{mmol}, 0.07 \mathrm{~g}$). The reaction mixture was stirred for 12 h at 60 ${ }^{\circ} \mathrm{C}$. Then, the mixture was cooled to room temperature and 10 ml of water was added and the
resulting mixture was stirred for 30 min . The precipitated product was filtered, washed with water. The products were further purified by recrystallization in ethanol.

Ethyl 2-(6-amino-4-(4-chlorophenyl)-5-cyano-2,4-

 dihydropyrano[2,3-c]pyrazol-3-yl)acetate (5a). Yield: 75%, mp 197-199 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3270, 3114, 3098, 2183, 1729,$1620 ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta_{\mathrm{H}} 1.08(t, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.18(d, J=17.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(d, J=17.1 \mathrm{~Hz}$, 2H), 3.87-3.90 ($m, 2 \mathrm{H}$), $4.65(s, 1 \mathrm{H}), 6.99(s, 2 \mathrm{H}), 7.15(d, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(d, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 12.40(s, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta_{\mathrm{C}} 13.8,30.1,35.5,56.7,60.6,98.4,120.5$, 128.4, 129.4, 131.3, 132.6, 143.1, 160.8, 168.0. HR-MS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{O}_{3}[\mathrm{M}+1]$ 259.0911 found 259.0912. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{O}_{3}$: C, 56.91; H, 4.21; N, 15.62\%. found: C, 56.89; H, 4.20; N, 15.61%.Ethyl 2-(6-amino-4-(3-bromophenyl)-5-cyano-2,4-
 dihydropyrano[2,3-c]pyrazol-3-yl)acetate (5b). Yield: 78%, mp 194-196 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3477, 3273, 3100, 2182, 1729, 1642, 1594. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta_{\mathrm{H}} 1.09(t$, $J=5.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.20(d, J=20.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(d, J=20.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.85-3.91(m, 2 \mathrm{H}), 4.66(s, 1 \mathrm{H}), 7.02(s, 2 \mathrm{H}), 7.14-7.16(m, 1 \mathrm{H}), 7.26-7.30(\mathrm{~m}, 2 \mathrm{H})$, 7.42-7.44 ($\mathrm{m}, 1 \mathrm{H}$), $12.44(s, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) $\delta_{\mathrm{C}} 13.8,30.1,35.7,56.4,60.7$, 98.2, 120.5, 121.7, 126.7, 129.7, 130.1, 130.7, 132.5, 146.8, 154.5, 160.9, 168.0. HR-MS (ESI)

Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrN}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}] 425.0225$ found 425.0230. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrN}_{4} \mathrm{O}_{3}$: C , 50.64 ; H, 3.75; N, 13.89\%. found: C, 50.66 ; H, 3.78; N, 13.92%.

Ethyl 2-(6-amino-5-cyano-4-(2-nitrophenyl)-2,4-
 dihydropyrano[2,3-c]pyrazol-3-yl)acetate (5c). Yield: 60%, mp 192-194 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3418, 3332, 3201, 2190 , 1742, 1639, 1593. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta_{\mathrm{H}} 1.03$ $(t, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.09(d, J=17.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(d, J=$
$17.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.80-3.83(m, 2 \mathrm{H}), 5.13(s, 1 \mathrm{H}), 7.07(s, 1 \mathrm{H}), 7.25-7.27(m, 1 \mathrm{H}), 7.47(m, 1 \mathrm{H})$, 7.61-7.63 $(m, 1 \mathrm{H}), 7.84-787(m, 1 \mathrm{H}), 12.45(s, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta_{\mathrm{C}} 14.26$, $30.63,31.67,56.56,61.16,98.20,120.50,124.1,128.8,131.9,134.0,138.0,149.2,161.5,168.3$. HR-MS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{5}$ [M+1] 370.1151 found 370.1159. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{5}$: C, $55.28 ; \mathrm{H}, 4.09 ; \mathrm{N}, 18.96 \%$. found: C, $55.30 ; \mathrm{H}, 4.07 ; \mathrm{N}, 18.98 \%$.

Ethyl 2-(6-amino-5-cyano-4-(3-nitrophenyl)-2,4-dihydropyrano[2,3-c]pyrazol-3-yl)acetate (5d). Yield: 68%, mp 187-189 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3474, 3230, 2189, 1730, 1638, 1598. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO$\left.d_{6}\right) \delta_{\mathrm{H}} 1.01(t, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.23(d, J=17.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.48(d, J=17.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.72-3.83(m, 2 \mathrm{H}), 4.87(s, 1 \mathrm{H}), 7.10(s, 1 \mathrm{H}), 7.61-7.66(m, 2 \mathrm{H})$, $7.99(s, 1 \mathrm{H}), 8.09-8.10(m, 1 \mathrm{H}), 7.84-787(m, 1 \mathrm{H}), 12.44(s, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta_{\mathrm{C}} 13.7,30.6,35.4,56.7,61.0,97.2,120.1,122.4,129.2,132.2,135.1,138.3,139.2,140.6$, 148.0, 161.2, 167.8. HR-MS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{5}[\mathrm{M}+1] 370.1151$ found 370.1158.

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{5}$: C, $55.28 ; \mathrm{H}, 4.09$; $\mathrm{N}, 18.96 \%$. found: C, $55.31 ; \mathrm{H}, 4.06$; N , 18.98\%.

Ethyl 2-(6-amino-5-cyano-4-(4-nitrophenyl)-2,4-dihydropyrano[2,3-c]pyrazol-3-yl)acetate (5e). Yield: 65%, mp 185-188 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3429, 3336, 3234, 2189, 1733, 1621, 1508. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta_{\mathrm{H}} 1.04$ $(t, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.24(d, J=17.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(d, J=$
$17.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.80-3.84(m, 2 \mathrm{H}), 4.85(s, 1 \mathrm{H}), 7.09(s, 2 \mathrm{H}), 7.45(d, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.21(d, J=$ 8.6 Hz, 1H), $12.42(s, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta_{\mathrm{C}} 13.7,30.2,35.9,55.9,60.6,97.7$, $123.8,128.9,132.6,146.4,151.8,161.0,162.0,168.0$. HR-MS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{5}$ [M+1] 370.1151 found 370.1148. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{5}$: C, 55.28; H, 4.09; N, 18.96\%. found: C, $55.32 ; \mathrm{H}, 4.12 ; \mathrm{N}, 18.92 \%$.

Ethyl 2-(6'-amino-5-bromo-5'-cyano-2-oxo-2'H-spiro[indoline-3,4'-pyrano[2,3-c]pyrazole]-3'yl)acetate (5f). Yield: 85%, mp 234-236 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3310, 3174, 2194, 1730, 1629, 1596. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $\left.d_{6}\right) \delta_{\mathrm{H}} 1.07(t, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.06(d, J=17.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(d, J=17.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.05-7.50(m, 3 \mathrm{H}, 2 \mathrm{H}), 10.73(s, 1 \mathrm{H}), 12.61(s, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) δ_{C} $13.8,29.8,47.4,54.6,60.8,95.6,111.8,114.1,118.5,127.6,131.6,131.9,134.3,140.8,155.2$, 162.5, 167.4, 177.3. HR-MS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{BrN}_{5} \mathrm{O}_{4}$ [M+1] 444.0302 found 444.0309 .

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{BrN}_{5} \mathrm{O}_{4}$: C, 48.67; H, 3.18; N, 15.76\%. found: C, 48.69; H, 3.22; N, 15.73\%.

Ethyl 2-(6'-amino-5'-cyano-5-fluoro-2-oxo-2'H-spiro[indoline-3,4'-pyrano[2,3-c]pyrazole]-3'-yl)acetate (5g). Yield: $82 \%, \operatorname{mp} 254-256{ }^{\circ} \mathrm{C}$; IR (KBr): 3433, 3320, $2190,1719,1641,1582 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta_{\mathrm{H}} 1.06(t, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.87-3.15$ $(m, 2 \mathrm{H}), 3.80-3.88(m, 2 \mathrm{H}), 6.89-6.94(m, 1 \mathrm{H}), 7.33(s, 1 \mathrm{H}), 10.60(s, 1 \mathrm{H}), 12.58(s, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta_{\mathrm{C}} 13.7,29.8,47.6,54.8,60.7,95.8,110.7\left(d,{ }^{3} J_{\mathrm{C}-\mathrm{F}}=31.0 \mathrm{~Hz}\right)$, $112.5\left(d,{ }^{2} J_{\mathrm{C}-\mathrm{F}}=100.0 \mathrm{~Hz}\right), 115.4\left(d,{ }^{2} J_{\mathrm{C}-\mathrm{F}}=100.0 \mathrm{~Hz}\right), 115.6,118.5,131.6,131.6,133.6(d$, $\left.{ }^{3} J_{\mathrm{C}-\mathrm{F}}=15.5 \mathrm{~Hz}\right), 137.7\left(d,{ }^{4} J_{\mathrm{C}-\mathrm{F}}=5.0 \mathrm{~Hz}\right), 155.2,157.5,159.4,162.5,167.4,177.7$. HR-MS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{FN}_{5} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}] 384.1158$ found 384.1153. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{FN}_{5} \mathrm{O}_{4}$: C, 56.40; H, 3.68; F, 4.96; N, 18.27\%. found: C, 56.39 ; H, 3.69; N, 18.26\%.

Ethyl 2-(6'-amino-5'-cyano-2-oxo-2'H-spiro[indoline-3,4'-pyrano[2,3-c]pyrazole]-3'-yl)acetate (5h). Yield: 85\%, $\mathrm{mp} 233-235{ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): 3549,3164,2191,1723,1612$,
1486. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta_{\mathrm{H}} 1.05(t, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.96(\mathrm{AB} q, J=17.5 \mathrm{~Hz}, 2 \mathrm{H})$, 3.85-3.85 ($\mathrm{m}, 2 \mathrm{H}$), 6.88-6.90 ($\mathrm{m}, 1 \mathrm{H}$), $6.99(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.27(\mathrm{~m}, 3 \mathrm{H}), 10.54(\mathrm{~s}, 1 \mathrm{H}), 12.53(s$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta_{\mathrm{C}} 13.8,29.7,47.1,55.3,60.7,96.3,109.7,118.6,122.3$, 124.7, 129.0, 131.6, 131.8, 141.6, 155.2, 162.4, 167.4, 177.7. HR-MS (ESI) Calcd for
$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}] 388.1022$ found 388.1031. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{4}$: C, 59.18; H, 4.14; $\mathrm{N}, 19.17 \%$. found: C, $59.17 ; \mathrm{H}, 4.15 ; \mathrm{N}, 19.17 \%$.

Methyl 2-(6'-amino-5'-cyano-2-oxo-2'H-spiro[indoline-

 3,4'-pyrano[2,3-c]pyrazole]-3'-yl)acetate (5i). Yield: 75\%, mp $268-270{ }^{\circ} \mathrm{C}$; IR (KBr): 3549, 3164, 2191, 1723, 1612, $1486 .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta_{\mathrm{H}} 2.41(d, J=17.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(d, J=17.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(s$, $3 \mathrm{H}), 7.36-7.43(m, 1 \mathrm{H}), 7.72-8.07(m, 4 \mathrm{H}), 8.36-8.40(m, 1 \mathrm{H}), 12.53(s, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) $\delta_{\mathrm{C}} 30.0,47.6,52.3,55.8,96.8,110.3,119.0,122.8,125.2,129.5,132.0,132.2,142.0$, 155.7, 162.9, 168.3, 178.1. HR-MS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{4}[\mathrm{M}+1] 352.1042$ found 352.1046. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{4}$: C, $58.12 ; \mathrm{H}, 3.73$; N, 19.93;\%. found: C, 58.10; H, 3.71; N, 19.90\%.
Ethyl

spiro[acenaphthylene-1,4'-pyrano[2,3-c]pyrazole]-3'-yl)acetate (5j). Yield: 87%, mp $219-221{ }^{\circ} \mathrm{C}$; IR (KBr): 3408, 3130, 2189, 1728, 1644, 1593. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta_{\mathrm{H}} 0.84(t, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}), 2.43(d, J=17.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(d, J=17.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.41-3.49(m, 2 \mathrm{H}), 7.38(s, 1 \mathrm{H}), 7.43-$ $7.45(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.89-7.92(\mathrm{~m}, 1 \mathrm{H}), 8.02-8.07(\mathrm{~m}, 2 \mathrm{H}), 8.39-8.40(\mathrm{~m}, 1 \mathrm{H}), 12.53$ $(s, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) $\delta_{\mathrm{C}} 13.5,29.7,51.7,56.1,60.4,97.3,118.7,121.6,122.6$, 125.1, 129.0, 129.31, 130.5, 131.7, 132.4, 140.1, 155.3, 162.5, 167.1, 203.2. HR-MS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}] 423.1069$ found 423.1066. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 66.00; H , 4.03; N, 13.99\%. found: C, 65.99; H, 4.02; N, 13.98\%.

Methyl

2-(6'-amino-5'-cyano-2-oxo-2H,2'H-spiro[acenaphthylene-1,4'-pyrano[2,3-c]pyrazole]-3'-yl)acetate (5k). Yield: 76%, mp $239-241{ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): 3388,3148,2188$, 1730, 1642, 1591. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta_{\mathrm{H}} 2.93(d, J=$ $17.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(d, J=17.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.86-6.89(m, 1 \mathrm{H}), 6.98(s, 1 \mathrm{H}), 7.23-7.27(m, 3 \mathrm{H})$, $10.55(s, 1 \mathrm{H}), 12.53(s, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta_{\mathrm{C}} 30.0,52.0,56.5,61.2,97.8$, $119.2,122.0,123.0,125.6,129.4,129.8,130.5,131.0,132.1,140.5,141.3,155.8,163.0,168.0$, 203.7. HR-MS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$ [M+1] 387.1088 found 387.1076. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 65.28; H, 3.65; N, 14.50\%. found: C, $65.26 ; \mathrm{H}, 3.67 ; \mathrm{N}, 14.46 \%$.

Eethyl 6'-amino-3'-(2-methoxy-2-oxoethyl)-2-oxo-2H,2'H-spiro[acenaphthylene-1,4'-pyrano[2,3-c]pyrazole]-5'-carboxylate (5I). Yield: $68 \%, \mathrm{mp} 147-150{ }^{\circ} \mathrm{C}$; IR (KBr): 3549, 3164, 2191, 1723, 1612, 1486. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta_{\mathrm{H}}-0.14(t, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.32(d, J=17.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(s, 3 \mathrm{H}), 3.29-3.30(m, 2 \mathrm{H}), 7.19-7.22(m, 1 \mathrm{H}), 7.57-$ $7.62(m, 1 \mathrm{H}), 7.83-7.95(m, 3 \mathrm{H}), 8.10(\mathrm{brs}, 2 \mathrm{H}), 8.27-8.29(m, 1 \mathrm{H}), 12.35(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta_{\mathrm{C}} 12.5,29.9,51.9,58.8,75.4,99.9,119.8,121.8,124.1,128.8,129.4,130.2$, $131.9,132.7,140.7,145.4,163.3,167.8,168.5,204.7$. HR-MS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{6}$ [M+Na] 456.1166 found 456.1172. Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{6}$: C, 63.74; H, 4.42; N, 9.70\%. found: C, 63.77; H, 4.41; N, 9.73\%.

X-ray crystal structure analysis of $\mathbf{5 f}$

Crystal	5f
Empirical formula	C18 H14 Br1 N5 O4
Color, habit	Colorless, Block
Crystal dimensions (mm)	$0.42 \times 0.40 \times 0.17$
Crystal system	Triclinic
Space group	P-1
Z	2
$a(\AA)$	$8.4317(8)$
$b(\AA \AA)$	$12.8686(11)$
$c(\AA)$	$13.2953(14)$
$\beta\left({ }^{\circ}\right)$	$81.684(8)$
Temperature (K)	120
Volume $\left(\AA^{3}\right)$	$1257.4(2)$
$\mathrm{D}_{\text {calcd }}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.173
Radiation (\AA)	Mo K $\alpha \quad 0.71073$
Absorption coeff. $(\mu)\left(\mathrm{mm}^{-1}\right)$	1.661
Absorption correction	Numerical
$F(000)$	448
θ range for data collection $\left({ }^{\circ}\right)$	2.45 to 27.00
Goodness-of-fit on F^{2}	0.865
Final R indices $(\mathrm{I}>2 \sigma(\mathrm{I}))$	$\mathrm{R} 1=0.0814, \mathrm{wR} 2=0.1825$
Largest diff. peak and hole $\left(\mathrm{e} \AA^{-3}\right)$	0.654 and -0.830

Crystallographic data (excluding structure factors) for the structures reported in this work have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC: 823135 (5n). Copy of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge DB2 1EZ,UK (fax:+ 44 (1223) 336033; e-mail: deposit@ccdc.cam.ac.uk).

5a

5a

5h

$\stackrel{\circ}{\circ}$		$\stackrel{\sqrt[n]{7}}{\ddagger}$	

5h

1	,	1	T	1	T	T	T	1	T	1						1				1		
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

