Electronic Supplementary Information

Synthesis and evaluation of 2-heteroaryl and 2,3-diheteroaryl-1,4-naphthoquinones that potently induce apoptosis in cancer cells

Vishnu K Tandon,*^a Hardesh K Maurya,^b Sandeep Kumar,^c Aijaz Rashid,^d and Dulal Panda^{*d}

 Table 1. Optimization of reaction conditions of compound 11 in water.

Entry	Base	Surfactant	Temp. °C	t (h)	Yield (%)
1	NA	NA	30	8	00
2	Et ₃ N	NA	30	8	1-2
3	Et ₃ N	NA	60	8	15
4	Et ₃ N	SDS	60	8	21
5	КОН	TritonX-100	60	12	49
6	КОН	SDS	60	12	61
7	КОН	LD	60	12	62

NA= Not applicable

Compound No.	Base ^a	Time ^b	Temp. °C ^b	Yields (%) in aqueous micelles	
				In LD	In SDS
10	Et ₃ N	15 min	60	99	99
11	КОН	12h	60	62	61
12	Et ₃ N	1h	60	96	95
13	Et ₃ N	6h	50	76	74
14	КОН	10h	60	55	52
15	Et ₃ N	10h	60	92	90
16	Et ₃ N	12h	60	90	89
17	Et ₃ N	3h	65	99	97
18	Et ₃ N	10h	65	88	88
19	Et ₃ N	1h	65	90	88
20	Et ₃ N	2h	65	98	97
21	Et ₃ N	4h	65	99	98
22	Et ₃ N	3h	65	95	95
23	Et ₃ N	3h	65	96	96

Table 2. Reaction conditions for the formation of compounds 10-23 in Scheme 1.

^a1 equivalent base used, ^bOptimized time and temperature,

¹³C NMR of compound 11

¹³C NMR of compound **15**

¹H NMR of compound **17**

¹H NMR of compound **18**

¹³C NMR of compound **19**

¹H NMR of compound **20**

Mass of compound 21

¹H NMR of compound **21**

¹³C NMR of compound **21**

Figure 1. Annexin V and PI staining in the presence of Compound 12 (Scale bar 10 μ m).

Figure 2. Annexin V and PI staining in presence of compound 15 (Scale bar 10 μ m).

Figure 3. Increased caspase-3 nuclear localization in presence of compound 12 (Scale bar 10 μ m).

Figure 4. Increased caspase 3 nuclear localization in presence of compound 15 (Scale bar 10 μ m).

Figure 5. Increased phosphohistone positive cells in presence of compound 12 (Scale bar 10 μ m).

Figure 6. Increased phosphohistone positive cells in presence of compound 15 (Scale bar 10 μ m)

Figure 7. Compound 12 depolymerized microtubule and actin network (Scale bar 10 µm).

Figure 8. Compound 15 did not affect actin and microtubule network of HeLa cells (Scale bar 10 μ m)

Figure 9. Compound 12 increased expression of Cyclin B1 (Scale bar 10 μ m).