Conformationally restricted glutamic acid analogues: stereoisomers of 1-aminospiro[3.3]heptane-1,6-dicarboxylic acid

Anton V. Chernykh,^{a, b} Dmytro S. Radchenko,^{a, c} Oleksandr O. Grygorenko,^c

Dmitriy M. Volochnyuk,^b Svitlana V. Shishkina,^d Oleg V. Shishkin^d and Igor V. Komarov^{c,}*

^a Enamine Ltd., Alexandra Matrosova Street 23, Kyiv 01103, Ukraine

^b Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska 5, Kyiv 02660, Ukraine

^c Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine

E-mail: ik214@yahoo.com

^d STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenina ave., 61001 Kharkiv, Ukraine

Table of contents.

1.	¹ H NMR spectrum of the compound 8	S5
2.	13 C NMR spectrum of the compound 8	S 6
3.	¹ H NMR spectrum of the compound 13	S 7
4.	13 C NMR spectrum of the compound 13	S 8
5.	³¹ P NMR spectrum of the compound 13	S 9
6.	¹ H NMR spectrum of the compound 15	S 10
7.	¹³ C NMR spectrum of the compound 15	S 11
8.	¹ H NMR spectrum of the compound 9	S12
9.	13 C NMR spectrum of the compound 9	S13
10.	¹ H NMR spectrum of the compound 11a	S14
11.	¹³ C NMR spectrum of the compound 11a	S15
12.	NOE spectrum of the compound 11a	S 16
13.	HMBC spectrum of the compound 11a	S17
14.	¹ H- ¹ H COSY spectrum of the compound 11a	S 18
15.	NOESY spectrum of the compound 11a	S 19
16.	NOESY spectrum of the compound 11a (fragment)	S20
17.	¹ H NMR spectrum of the compound 11b	S21
18.	¹³ C NMR spectrum of the compound 11b	S22
19.	NOE spectrum of the compound 11b	S23
20.	¹ H- ¹ H COSY spectrum of the compound 11b	S24
21.	HMBC spectrum of the compound 11b	S25
22.	NOESY spectrum of the compound 11b	S26
23.	NOESY spectrum of the compound 11b (fragment)	S27
24.	¹ H NMR spectrum of the compound 16a	S28
25.	¹³ C NMR spectrum of the compound 16a	S29

26.	¹ H NMR spectrum of the compound 16b	S 30
27.	¹³ C NMR spectrum of the compound 16b	S 31
28.	¹ H NMR spectrum of the compound 16c	S32
29.	¹³ C NMR spectrum of the compound 16c	S33
30.	¹ H NMR spectrum of the compound 16d	S34
31.	¹³ C NMR spectrum of the compound 16d	S35
32.	¹ H NMR spectrum of the compound $1a$ ·HCl	S36
33.	¹³ C NMR spectrum of the compound $1a$ ·HCl	S 37
34.	¹ H NMR spectrum of the compound $\mathbf{1b}$ ·HCl	S38
35.	13 C NMR spectrum of the compound 1b ·HCl	S39
36.	¹ H NMR spectrum of the compound $1c$ ·HCl	S40
37.	13 C NMR spectrum of the compound 1 c·HCl	S41
38.	¹ H NMR spectrum of the compound $1d$ ·HCl	S42
39.	¹³ C NMR spectrum of the compound $1d$ ·HCl	S43
40.	¹ H NMR spectrum of the compound 18a	S44
41.	¹³ C NMR spectrum of the compound 18a	S45
42.	¹ H NMR spectrum of the compound 18b	S46
43.	¹³ C NMR spectrum of the compound 18b	S47
44.	¹ H NMR spectrum of the compound 18c	S48
45.	¹³ C NMR spectrum of the compound 18c	S49
46.	¹ H NMR spectrum of the compound 18d	S50
47.	¹³ C NMR spectrum of the compound 18d	S 51
48.	¹³ C DEPT spectrum of the compound 18d	S52
49.	¹ H NMR spectrum of the compound 19c	S53
50.	¹³ C NMR spectrum of the compound 19c	S54
51.	Stereochemical assignments of 1a-d	S55

52.	Table S1. Crystallographic data and experimental parameters	S56
	for the compound 13 and 18a-c	
53.	ORTEP diagrams of the compounds 18a–c	S57

¹H NMR spectrum of the compound **8**

13 C NMR spectrum of the compound **8**

³¹P NMR spectrum of the compound **13**

¹³C NMR spectrum of the compound **15**

¹H NMR spectrum of the compound **9**

¹³C NMR spectrum of the compound **9**

¹³C NMR spectrum of the compound **11a**

HSQC spectrum of the compound **11a**

¹H-¹H COSY spectrum of the compound **11a**

NOESY spectrum of the compound **11a** (fragment)

¹³C NMR spectrum of the compound **11b**

¹H-¹H COSY spectrum of the compound **11b**

NOESY spectrum of the compound **11b** (fragment)

¹³C NMR spectrum of the compound **16a**

¹³C NMR spectrum of the compound **16b**

¹³C NMR spectrum of the compound **16c**

13 C NMR spectrum of the compound **16d**

¹³C NMR spectrum of the compound 1a·HCl

¹H NMR spectrum of the compound $\mathbf{1b} \cdot \mathbf{HCl}$

¹³C NMR spectrum of the compound 1b·HCl

¹H NMR spectrum of the compound **18a**

¹³C NMR spectrum of the compound **18a**

¹³C NMR spectrum of the compound **18b**

¹H NMR spectrum of the compound **18c**

¹³C NMR spectrum of the compound **18c**

¹³C NMR spectrum of the compound **18d**

¹³C DEPT spectrum of the compound **18d**

¹³C NMR spectrum of the compound **19c**

The stereochemical assignment of the final compounds **1a-d** was done basing on several experiments: 1D- and 2D-NOESY for compounds **11a**,**b** (see above) and X-ray diffractional studies of three purposely synthesized compounds **18a-c**.

Before performing the NOE studies, we assigned the NMR signals in the spectra of **11a,b** using APT, HSQC, H,H-COSY experiments (see the spectra above). The H2 proton (which gives NMR signal at 3.15 ppm for **11a**, 3.08 ppm for **11b**), assigned reliably by its correlation with the C2 in the HSQC (the only tertiary carbon atom, 32.8 ppm for **11a**, 31.9 ppm for **11b**) was irradiated; NOE effect was observed for the proton with the chemical shift 2.54 ppm for **11a** and 2.19-2.34 ppm for **11b**. At the same time, strong NOE correlation was observed in the 2D-NOESY spectra for H7 (1.97 ppm (**11a**) and 2.11 ppm (**11b**)): with the signals H1b in **11a** (2.33 ppm) and H3b in **11b** (2.19-2.34 ppm). From these data we concluded that signals at 2.54 ppm (**11a**) and 2.63-2.77 ppm (**11b**) correspond to H1a and H3a. Hence, the keto-ester **11a** is the *trans*-isomer, because its H2 proton reveals strong NOE with H1a and H3a. Compound **11b** is the *cis*-isomer, because its H2 proton shows strong NOE with H1b and H3b.

The crystallographic data, experimental parameters and CCDB deposition numbers are listed in Table S1. ORTEP diagrams of the compounds **18a–c** illustrate the absolute configuration of the stereocenters in these compounds.

Ideally, X-Ray analysis of all the four derivatives **18a-d** would give us enough information regarding the stereochemistry of **1a-d**, because compounds **16a-d** bear chiral auxiliary with the defined absolute configuration and transformed both into **1a-d** and **18a-d** without racemization at the stereocenters. However, compound **18d** did not give crystals suitable for the X-Ray study. Its absolute stereoconfiguration was deduced using the following reasoning. Compound **18d** is the only diastereomer of the four possible (the chiral auxiliary group was derived from the *S*- α -phenylglycinol for all the diastereomers); its absolute configuration at one of the stereocenter C2 (2*S*) should be the same as in its precursor **11b**, determined by 1D- and 2D-NOESY experiments. The other stereocenter C5 must have the stereoconfiguration reverse to that in its diastereomer **18c**, thus, 5*S*.

Parameter	13	18a	18b	18c
a, Å	8.9199(4)	6.0940(5)	6.1255(6)	10.260(3)
b, Å	18.9724(8)	15.418(2)	11.218(1)	5.820(2)
c, Å	17.167(1)	17.637(2)	24.188(2)	14.060(4)
α, deg	90.0	90.0	90.0	90.0
β, deg	100.522(5)	90.0	90.0	98.37(3)
γ, deg	90.0	90.0	90.0	90.0
V, Å ³	2856.4(3)	1657.1(3)	1662.1(3)	830.6(5)
Т, К	293(2)	293(2)	293(2)	293(2)
F(000)	1132	672	672	336
Crystal system	Monoclinic	Rhombic	Rhombic	Monoclinic
Space group	$P2_1/n$	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$	$P2_1$
Z	2	4	4	2
μ , mm ⁻¹	0.307	0.089	0.089	0.089
$d_{calc}, g/cm^3$	1.256	1.264	1.260	1.261
$2\Theta_{\rm max}$, deg	50	60	60	60
Reflection measured	19720	8562	13719	7469
Reflections independent	5018	4455	4755	4370
R _{int}	0.023	0.071	0.102	0.155
Reflections with F>4 σ (F)	3827	1524	1883	836
R_1	0.098	0.048	0.055	0.066
wR_2	0.285	0.064	0.084	0.159
S	1.227	0.793	0.840	0.696
CCDC deposition number	962474	962475	962476	962477

Table S1 Crystallographic data and experimental parameters for the compound 13 and 18a-c

