Supporting Information

Designed Self-assemblies Based on Cooperative Noncovalent Interactions Including Anion-π, Lone-pair Electron-π and Hydrogen Bonding

Wei Liu, Qi-Qiang Wang, Yuanyuan Wang, Zhi-Tang Huang, and De-Xian Wang*

^aBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular

Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing,

100190, China

Email: dxwang@iccas.ac.cn

Table of Contents	
General information	S2
Experimental details	S2
Crystal Structure	S5
NMR titration, DOSY and 1-D Selective NOESY results	S11
ESI-MS spectra	S21
NMR spectra	S23

1. General information

¹H and ¹³C NMR spectra were recorded on 300MHz, 400MHz and 600MHz NMR spectrometers. Chemical shifts are reported in ppm with either tetramethylsilane or the residual solvent used as an internal standard. Melting points are uncorrected. All solvents were dried according to standard procedures prior to use. All other major chemicals were obtained from commercial sources and used without further purification.

2. Experimental details

To an ice-bath cooled flask containing cyanuric chloride (1.62 g, 8.8 mmol) in tetrahydrofuran (30 mL) was added dropwise a mixture of 5-(benzyloxy)-benzene-1,3-diol **1** (0.86 g, 4 mmol) and diisopropylethylamine (1.30 g, 10 mmol) in tetrahydrofuran (40 mL) within 1 h. The reaction mixture was stirred for another 2 hour. After filtration, the filtrate was concentrated and chromatographed on a silica gel column with a mixture of petroleum ether and ethylacetate (15:1) as an eleunt to give pure compound **3** as white solid (1.34 g, 65 %): mp 157-158 °C; IR (KBr) *v* 1629, 1600, 1554, 1532 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ ppm 7.43-7.34 (m, 5H), 6.81 (d, *J*=2.1 Hz, 2H), 6.70 (t, *J*=2.1 Hz, 1H), 5.08 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 173.3, 170.7, 160.6, 152.0, 135.5, 128.8, 128.5, 127.6, 107.3, 106.9, 70.9; MS (EI) m/z (%) 514 (0.6), 512 (1), 510 (M+0.8), 92 (10), 91 (100), 65 (7). Anal. Calcd. For C₁₉H₁₀N₆O₃Cl₄: C, 44.56; H, 1.97; N, 16.41. Found: C, 44.89; H, 1.97; N, 16.30.

Synthesis of 4b

At room temperature, monomer 5-(benzyloxy)-benzene-1,3-diol **1** (2.30 g, 10.6 mmol) and trimer **3** (5.50 g, 10.6 mmol) was dissolved in acetone (250 mL), respectively and the mixture was added dropwise simultaneously to a solution of diisopropylethylamine (5.2 g, 40 mmol) in acetone (1000 mL) within 3 hours. The mixture was stirred for another 24 h. After removal of the solvent, the residue was chromatographed on a silica gel column with a mixture of petroleum ether and ethylacetate (15:1) as an eluent to give pure compound **4b** as white solid (3.60 g, 52%): mp 186-187°C; IR (KBr) *v* 1628, 1598, 1550 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ ppm 7.37-7.28 (m,10H), 6.56 (d, *J*=2.0 Hz, 4H), 6.34 (t, *J*=2.0 Hz, 2H), 4.96 (s, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 174.5, 172.3, 160.7, 152.1, 135.5, 128.7, 128.4, 127.3, 108.2, 106.6, 70.8; MS (MALDI-TOF) m/z (%) 655.0 (M+1, 100), 656.0 (44), 657.0 (78), 658.0 (24),659.0 (16), 677.0 (M⁺+Na, 20), 678.0 (9), 679.0 (16), 680.0(5). Anal. Calcd. For C₃₂H₂₀N₆O₆Cl₄: C, 58.64; H, 3.08; N, 12.82. Found: C, 58.62; H, 3.17; N, 12.67.

Synthesis of 4a

To the solution of AlCl₃ (1.99 g, 15 mmol) in 40 mL of CHCl₃ was added compound **4b** (0.98 g, 1.5 mmol). The solution was refluxed for 3 hours under argon atmosphere. The

reaction was quenched by 50 mL ice-water. The resulting solution was extracted with ethylacetate (120 mL × 2)and the organic phase was dried with anhydrous sodium sulphate. After removal of the solvent, the residue was chromatographed on a silica gel column with a mixture of petroleum ether and ethylacetate (3:1) as an eleunt to give pure **4a** as white solid (0.15 g, 21%): mp >300 °C; IR (KBr) *v* 3225, 1551, 1440 cm⁻¹; ¹H NMR (300 MHz, *d*₆-acetone) δ ppm 9.19 (s, 2H), 6.57 (d, *J*=1.8 Hz, 2H), 6.54 (d, *J*=1.8 Hz, 4H); ¹³C NMR (150 MHz, *d*₆-acetone) δ 173.5, 172.5, 159.4, 152.6, 107.0, 106.6; MS (ESI, neg.) *m/z* 473.1 (M-H). Anal. Calcd. for C₁₈H₈Cl₂N₆O₆·EA: C, 46.91; H, 2.86; N, 14.92. Found: C, 46.85; H, 2.66; N, 15.19.

Methods to get the single crystal fitted to X-ray analysis.

 $Et_4N^+(4a\cdot Cl)^-(C_{26}H_{28}Cl_3N_7O_6)$. 4a (6 mg) and tetraethylammonium chloride (4 mg) was dissolved in acetone and methanol, respectively. The two solutions were mixed together and diethyl ether was allowed to evaporate into the mixture slowly to afford colorless single crystals. Same procedures were applied to obtain single crystals of $Et_4N^+(4a\cdot Br)^-$ and $Et_4N^+(4a\cdot NO_3)^-$.

4a ($C_{44}H_{34}Cl_4N_{12}O_{17}$). 4a (10 mg) was dissolved in a mixture of ethyl acetate and petroleum ether. The solution was allowed to evaporate slowly at room temperature to afford colorless single crystals.

NMR titrations.

The ¹H NMR titration was performed at ambient temperature. The concentration of **4a** $(1.26 \times 10^{-2} \text{ M}, 0.5 \text{ml}, d_6\text{-acetone})$ was kept constant, batch of anions (chloride, bromide and nitrate) in tetrabutylammonium salts were added and the ¹H NMR spectra were recorded. The titration data was fitted with a HyperNMR program.

Diffusion-ordered NMR spectroscopy.

Diffusion ordered spectroscopy (DOSY) was performed at 213 K. The method applied was a pulse sequence employing stimulated echo, longitudinal eddy current delay, bipolar gradients during a recycle delay of 1.5 seconds. For 16 gradient amplitudes that were incremented in steps of gradient squared between 0.68 and 32.35 G cm⁻¹, 8 transients of 32768 complex data points (acquisition time 911 ms) were acquired using a diffusion

delay Δ =100 ms. The gradient pulse durations of δ =1.7 ms for Bu₄NCl (2.76×10⁻² M), δ =2.1 ms for **4a** and δ =2.6 ms for the mixture of **4a** and Bu₄NCl were used, respectively. To obtain the diffusion coefficients of the host and guest, the weight average of diffusion coefficients of all the aryl and alkyl protons was calculated, respectively.

3. X-ray Structures

Complex	$Et_4N^+(4a\cdot Cl^-)$	$Et_4N^+(4a\cdot Br^-)$	$Et_4N^+(4a\cdot NO_3)$	4a
empirical formula	$C_{26}H_{28}Cl_{3}N_{7}O_{6}$	$C_{26}H_{28}BrCl_2N_7O_6$	$C_{26}H_{28}Cl_2N_8O_9\\$	$C_{44}H_{34}Cl_4N_{12}O_{17}$
M_r	640.90	685.36	667.46	1144.63
crystal size [mm ³]	0.50×0.45×0.36	0.44×0.26×0.24	0.46×0.21×0.19	0.50×0.20×0.12
crystal system	orthorhombic	orthorhombic	orthorhombic	monoclinic
space group	Pbca	Pbca	Pbca	P2(1)/n
a [Å]	17.004(3)	17.077(3)	17.539(4)	13.470(3)
b [Å]	18.042(3)	17.927(4)	17.744(4)	12.046(2)
c [Å]	19.082(5)	19.393(4)	19.730(4)	30.738(6)
a [deg]	90.00	90.00	90.00	90.00
β [deg]	90.00	90.00	90.00	92.59(3)
γ [deg]	90.00	90.00	90.00	90.00
V [Å ³]	5854(2)	5937(2)	6140(2)	4982.6(17)
$d \left[g/cm^3 \right]$	1.454	1.534	1.444	1.526
Z	8	8	8	4
T [K]	173(2)	173(2)	173(2)	173(2)
R factor $[I \ge 2\sigma(I)]$	0.1154	0.1483	0.2288	0.1180
R factor (all data)	0.1244	0.1808	0.2533	0.1316
quality of fit	1.262	1.300	1.325	1.279
CCDC	968607	968608	968609	968610

Table S1 Crystallographic data for 4a and complexes of 4a and anions.

S5

Figure S1 Crystal structure of **4a** (A) top view, (B) side view and (C) self assembly through intermolecular hydrogen bonding. Selected bond lengths [Å]: C3-O3 1.351, O3-C4 1.420, C8-O6 1.423, O6-C10 1.343, C12-O5 1.343, O5-C13 1.424, C17-O4 1.409, O4-C2 1.347. Selected distances [Å]: C1^{...}C11 9.218, N3^{...}N5 4.556, C9^{...}C18 4.460, C6^{...}C15 5.373. The probability is 25 percentage. Hydrogen atoms were omitted for clarity.

Figure S2 (A) Intra- and intermolecular interactions in complex of **4a** and chloride and (B) Infinite meshy assembly

Figure *S3* Crystal structure of complex $Et_4N^+(4a \cdot Br^-)$ (A) side view, (B) top view, (C) ion pair complex, (D) intra- and intermolecular interactions of the complex, (E) and (F) infinite linear and meshy self-assemblies. Selected distances (Å): 3.486 [Br(1)…triazine(1) plane], 3.161 [Br(1)…O(5)], 3.289 [O(5)…triazine(2) plane], 8.901 [C(1)…C(11)], 4.123 [C(9)…C(18)], 7.428 [C(6)…C(15)].

Figure S4 Crystal structure of complex $Et_4N^+(4a \cdot NO_3^-)$ (A) side view, (B) top view, (C) ion pair complex, (D) intra- and intermolecular interactions in complex of **4a** and nitrate, (E) and (F) infinite linear and meshy self-assemblies. Selected distances (Å): 2.880 [O(7)…triazine(1) plane], 2.660 O(8)…O(6), 3.256 O(8)…C(9), 3.479 [O(6)…triazine(2) plane], 8.908 C(1)…C(11), 4.164 C(9)…C(18), 7.024 C(6)…C(15).

4. NMR titration, DOSY and 1-D Selective NOESY results

Figure S5 ¹H NMR titrations of **4a** $(1.26 \times 10^{-2} \text{ M})$ with the addition of tetrabutylammonium chloride in d_6 -acetone at room temperature: (A) spectra of titrations with the increasing of anions. (B) Job's plot of the complex with total concentrations being 1.10×10^{-2} M and (C) ¹H NMR titration isotherm.

Figure S6 ¹H NMR titrations of **4a** $(1.26 \times 10^{-2} \text{ M})$ with the addition of tetrabutylammonium bromide in d_6 -acetone at room temperature: (A) spectra of titrations with the increasing of anions. (B) ¹H NMR titration isotherm.

В

С

Figure S7 ¹H NMR titrations of **4a** $(1.26 \times 10^{-2} \text{ M})$ with the addition of tetrabutylammonium nitrate in d_6 -acetone at room temperature: (A) spectra of titrations with the increasing of anions. (B) Job's plot of the complex with total concentrations being 1.10×10^{-2} M and (C) ¹H NMR titration isotherm.

Figure S8 DOSY NMR spectra of (A) $Bu_4NCl (2.76 \times 10^{-2} \text{ M})$, (B) **4a** $(1.37 \times 10^{-2} \text{ M})$ and (C) mixture of **4a** $(1.37 \times 10^{-2} \text{ M})$ and $Bu_4NCl (2.76 \times 10^{-2} \text{ M})$ in d_6 -acetone. The temperature is 213 K. To obtain the diffusion coefficients of the host and guest, the weight average of diffusion coefficients of all the aryl and alkyl protons was calculated, respectively.

Figure S9 ¹H NMR spectra of (A) **4a** alone with selective excitation of H^3 , (B) **4a** in the presence of Bu₄NCl with selective excitation of H^3 and (C) **4a** in the presence of Bu₄NCl with selective excitation of Bu₄NCl.

Figure S10 ¹H NMR of tetrabutylammonium chloride (0.87×10^{-2} M) without (up) and with (down) the presence of **4a** (0.96×10^{-2} M) in *d*₆-acetone at room temperature.

5. ESI-MS spectra

Figure S12 ESI-MS spectra of the complex of 4a and bromide.

Figure S13 ESI-MS spectra of the complex of 4a and nitrate.

6. NMR spectra

Figure S14 ¹H NMR spectrum of **3**.

*Figure S15*¹³C NMR spectrum of **3**.

Figure S16 ¹H NMR spectrum of **4b**.

Figure S18 ¹H NMR spectrum of **4a**.

*Figure S19*¹³C NMR spectrum of 4a.