Supporting Information

For

Diastereoselection during 1,2-addition of

3-bromomethyl-5H-furan-2-one to α - chiral aldehydes mediated by

 indium in aqueous and organic solvent systems: Direct route to optically α-methylene- γ-butyrolactonesFuhai Zhang, ${ }^{\dagger}$ Yang Liu, ${ }^{\dagger}$ Longguan Xie, ${ }^{\dagger}$ and Xiaohua $\mathrm{Xu}^{*}{ }^{\star}{ }^{\dagger}$

> General Comments

> Crystal Structures and X-ray Diffraction Analysis Data

$>$ Experimental Section

$>$ NMR Spectra

General Comments

All solvents were dried prior to use using the standard methods. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 400 and 101 MHz , respectively, and chemical shifts were represented as d-values relative to the internal standard TMS. ${ }^{1} \mathrm{H}$: Chemical shifts are reported in ppm with the solvent resonance as the internal standard $\left(\mathrm{CHCl}_{3}: \delta 7.27\right.$
$\mathrm{ppm})$. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiple), dd (doublet of doublet). Coupling constants were reported in Hertz (Hz). The melting points were determined and uncorrected. High-resolution
mass Spectra were conducted using an Ionspec 7.0T spectrometer by ESI-FTICR technique. Flash column chromatography was performed on silica gel 60 (230-400 mesh). Optical rotations were determined using a Perkin Elmer 341 MC polarimeter. NMR spectroscopy data of the known compounds matches with those reported in the corresponding references. All new compounds were further characterized by HRMS.

Crystal Structures and X-ray Diffraction Analysis Data

Figure 1. Ortep drawing of $\mathbf{1 2 h}$ ' with 30% probability ellipsoids. Hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA) and angles (deg): O3-C12=1.428(2), O4-C13 $=1.447(2), \quad \mathrm{S} 1-\mathrm{C} 7=1.8048(17), \quad \mathrm{C} 10-\mathrm{C} 11=1.539(2), \quad \mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 7=102.71(9), \quad \mathrm{O} 3-\mathrm{C} 12-\mathrm{C} 13$ $=110.23(12)$.

Figure 2. Ortep drawing of $\mathbf{1 3 g}$ ' with 30% probability ellipsoids. Hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA) and angles (deg): $\mathrm{S} 1-\mathrm{C} 1=1.770(2), \mathrm{S} 1-\mathrm{C} 7=1.817(2)$, $\mathrm{O} 2-\mathrm{C} 9=1.343(3), \mathrm{O} 3-\mathrm{C} 12=1.428(2), \mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 7=104.13(12), \mathrm{C} 9-\mathrm{O} 2-\mathrm{C} 10=112.09$ (15).

Figure 3. Ortep drawing of $\mathbf{1 3 g}$ " with 30% probability ellipsoids. Hydrogen atoms have been omitted for clarity. Selected bond lengths (A) and angles (deg): S1-C1=1.767(3), O2-C10 $=1.461(3), \mathrm{O} 3-\mathrm{C} 12=1.411(3), \mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 7=103.17(11), \mathrm{C} 9-\mathrm{O} 2-\mathrm{C} 10=111.22(17)$.

All intensity data of $\mathbf{1 2 h}$ ', $\mathbf{1 3 g}$ ' and $\mathbf{1 3 g}$ " were collected with a Rigaku Saturn 724 CCD diffractometer using graphite-monochromated $\mathrm{Mo} \mathrm{K} \alpha$ radiation ($\lambda=0.71073 \AA$) at 113(2) or 293(2) K. The structures were resolved by direct methods ${ }^{\text {S4, S5 }}$ and refined by full-matrix least-squares on F^{2}. Hydrogen atoms were considered in calculated positions. All non-hydrogen atoms were refined anisotropically. Crystals of 12h' suitable for X-ray analysis were grown from acetidine, 13g' were grown from acetidine, and $\mathbf{1 3 g}$ ', were grown from acetidine. Crystallographic data for $\mathbf{1 2 h}$ ', 13g' and $\mathbf{1 3 g}{ }^{\prime \prime}$ are given in Table 1.

Table 4. Crystallographic data for $\mathbf{1 2 h}^{\prime}, \mathbf{1 3 g}$ ' and $\mathbf{1 3 g}{ }^{\prime \prime}$.

	$\mathbf{1 2 h}$,	$\mathbf{1 3 g}$,	$\mathbf{1 3 g} \boldsymbol{\prime}$
formula	$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~S}$	$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~S}$	$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~S}$
fw	376.49	350.46	350.46
$T(\mathrm{~K})$	$113(2)$	$293(2)$	$293(2)$
space group	$\mathrm{P} 2(1)$	$\mathrm{P} 2(1)$	$\mathrm{P} 2(1) 2(1) 2(1)$
$a(\AA)$	$9.514(7)$	$11.605(2)$	$9.1195(18)$
$b(\AA)$	$9.975(7)$	$5.5973(11)$	$10.663(2)$
$c(\AA)$	$10.636(7)$	$14.561(3)$	$19.003(4)$
$\alpha($ deg. $)$	90	90	90
$\beta($ deg. $)$	$90.313(9)$	$104.23(3)$	90
$\gamma($ deg. $)$	90	90	90

$V\left(\AA^{3}\right)$	$1009.3(12)$	$916.8(3)$	$1847.9(6)$
Z	2	2	4
$\mathrm{~d}_{\text {calcd. }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.239	1.269	1.260
$F(000)$	404	376	752
GOF	1.022	0.991	1.000
$R_{l}(I>2 \sigma(I))$	0.0305	0.0396	0.0523
$w R_{2}($ all data $)$	0.0587	0.1029	0.1368

Experimental Section

Additions Involving Bromide 2 and Aldehyde 1a. A. In $\mathbf{H}_{2} \mathrm{O}$. A magnetically stirred solution of $\mathbf{1 a}(188 \mathrm{mg}, 1.0 \mathrm{mmol})$ in water $(11 \mathrm{ml})$ was treated with indium powder ($230 \mathrm{mg}, 2.0 \mathrm{mmol}$) and allyl bromide $2(264 \mathrm{mg}, 1.5 \mathrm{mmol})$. After 12 h , ethyl acetate was added, stirring was maintained for 60 min , and the separated aqueous phase was extracted with ethyl acetate $(2 \times 20 \mathrm{~mL})$. The combined organic layers were dried and evaporated. Chromatography of the residue on silica gel (elution with petroleum ether/ethyl acetate) gave the products containing a 1.2:1 mixture of 7a and $\mathbf{8 a}$ as a colourless oil ($216 \mathrm{mg}, 75.6 \%$ yield). The components were identified on the basis of their ${ }^{1} \mathrm{H}$ NMR chemical shifts and coupling constants in CDCl 3 (at 400 MHz$): 7 \mathrm{a}, \delta 6.31(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=9.2$, $6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.72$ (dt, $J=10.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{ddd}, J=10.6,7.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4)$, $3.15-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 9 \mathrm{H})$, $0.05-0.01(\mathrm{~m}, 6 \mathrm{H}) ; \mathbf{8 a}, \delta 6.33(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}) 6.01(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-$ $4.25(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{dt}, J=10.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.49(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 2.34(\mathrm{~d}, J=$ $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.05-0.01(\mathrm{~m}, 6 \mathrm{H}) .7 \mathbf{a}+8 \mathrm{a},{ }^{13} \mathrm{C}$ NMR (101 MHz,): 171.36,171.26, 135.95, 135.70, 126.31, 125.72, 77.30, 77.02,
$69.98,69.18,68.05,67.93,42.19,41.46,26.46,21.28,18.68,18.49,1.72,-3.27,-3.59$, -4.11, -4.20. HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Si}\left(\mathrm{M}-\mathrm{H}^{+}\right)$285.1522; found 285.1519.
B. In THF. A mixture of $\mathbf{1 a}(188 \mathrm{mg}, 1.0 \mathrm{mmol})$, bromide $\mathbf{2}(264 \mathrm{mg}, 1.5 \mathrm{mmol})$, and indium powder ($230 \mathrm{mg}, 2.0 \mathrm{mmol}$) in THF (11 ml) was stirred 30h. Following product isolation in the predescribed manner, there was isolated 220 mg of a $0.8: 1$ mixture of 7a and $\mathbf{8 a}$ (77% yield). The products were identified on the basis of their ${ }^{1} \mathrm{H}$ NMR chemical shifts as above.

Additions Involving Bromide 2 and Aldehyde 1b. A. In $\mathbf{H}_{2} \mathbf{O}$. A mixture of 1b ($250 \mathrm{mg}, 1.0 \mathrm{mmol}$), bromide $\mathbf{2}(264 \mathrm{mg}, 1.5 \mathrm{mmol}$), and indium powder ($230 \mathrm{mg}, 2.0$ $\mathrm{mmol})$ in water $(11 \mathrm{ml})$ was stirred at rt for 12 h and worked up in the predescribed manner. The mixture was subjected to flash chromatography on silica gel (elution with petroleum ether/ethyl acetate) gave the products containing a $4: 1$ mixture of $\mathbf{7 b}$ and $\mathbf{8 b}$ as a colourless oil ($279 \mathrm{mg}, 80 \%$ yield). The components were identified on the basis of their ${ }^{1} \mathrm{H}$ NMR chemical shifts and coupling constants in CDCl 3 (at 400 MHz): 7b, $\delta 7.57$ (ddd, $J=11.4,8.5,5.7 \mathrm{~Hz}, 5 \mathrm{H}), 6.61(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.54(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.27(\mathrm{~m}, 1 \mathrm{H})$, $4.01(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dddt}, J=9.0,6.8,4.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 1 \mathrm{H}), 1.11(\mathrm{~d}$, $J=2.3 \mathrm{~Hz}, 9 \mathrm{H}), 0.28(\mathrm{t}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}) ; \mathbf{8 b}, 6.56(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.42(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{t}, J=6.0 \mathrm{~Hz}$, 1H), $3.29-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 1 \mathrm{H}) ; \mathbf{7 b + 8 b},{ }^{13} \mathrm{C}$ NMR (101 MHz) : 169.71, 169.66, $139.24,138.92,133.63,127.65,127.56,126.32,126.04,124.36,123.88,76.62,75.36$,
75.22, 67.38, 67.15, 39.43, 39.35, 24.77, 17.07, -5.42, -5.98, -6.13. HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Si}\left(\mathrm{M}-\mathrm{H}^{+}\right) 347.1679$; found 347.1690.
B. In THF. A mixture of $\mathbf{1 b}(250 \mathrm{mg}, 1.0 \mathrm{mmol})$, bromide $\mathbf{2}(264 \mathrm{mg}, 1.5 \mathrm{mmol})$, and indium powder ($230 \mathrm{mg}, 2.0 \mathrm{mmol}$) in THF (11 ml) was stirred 30h. Following product isolation in the predescribed manner, there was isolated 261 mg of a $2.5: 1$ mixture of $\mathbf{7 b}$ and $\mathbf{8 b}$ (75% yield). The products were identified on the basis of their ${ }^{1} \mathrm{H}$ NMR chemical shifts as above.

Additions Involving Bromide 2 and Aldehyde 1c. A. In $\mathbf{H}_{2} \mathrm{O}$. A mixture of 1c (312 mg , 1.0 mmol), bromide $\mathbf{2}(264 \mathrm{mg}, 1.5 \mathrm{mmol})$, and indium powder ($230 \mathrm{mg}, 2.0$ $\mathrm{mmol})$ in water $(11 \mathrm{ml})$ was stirred at rt for 12 h and worked up in the predescribed manner. The mixture was subjected to flash chromatography on silica gel (elution with petroleum ether/ethyl acetate) gave the products containing a 2:1 mixture of $\mathbf{7 c}$ and 8 c as a colourless oil ($324 \mathrm{mg}, 79 \%$ yield). The components were identified on the basis of their ${ }^{1} \mathrm{H}$ NMR chemical shifts and coupling constants in CDCl 3 (at 400 MHz): 7c, $\delta 7.58-7.36(20 \mathrm{H}), 6.23(\mathrm{t}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.81(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.24$ (ddd, J $=10.8,8.0,2.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4), 2.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.12(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.01$ $(\mathrm{d}, J=3.1 \mathrm{~Hz}, 18 \mathrm{H}) ; \mathbf{8 c}, \delta 7.58-7.36(10 \mathrm{H}), 6.23(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.38(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 9 \mathrm{H}) ; \mathbf{7 c}+\mathbf{8 c},{ }^{13} \mathrm{C}$ NMR (101 MHz,): 169.66, 169.47, 134.90, 134.76, 134.64, 134.03, 133.78, 132.19, $131.46,129.33,129.22,129.04,127.08,126.96,126.74,126.67,124.59,124.08$, 75.54, 75.16, 68.77, 68.50, 66.01, 65.56, 40.34, 39.31, 28.66, 26.03, 25.94, 19.44, 18.25, 18.10, 15.54. HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Si}\left(\mathrm{M}-\mathrm{H}^{+}\right)$409.1835; found
409.1844.
B. In THF. A mixture of $\mathbf{1 c}(312 \mathrm{mg}, 1.0 \mathrm{mmol})$, bromide $\mathbf{2}(264 \mathrm{mg}, 1.5 \mathrm{mmol})$, and indium powder ($230 \mathrm{mg}, 2.0 \mathrm{mmol}$) in THF (11 ml) was stirred 30h. Following product isolation in the predescribed manner, there was isolated 309 mg of a $1.5: 1$ mixture of $\mathbf{7 c}$ and $\mathbf{8 c}$ (75.4% yield). The products were identified on the basis of their ${ }^{1} \mathrm{H}$ NMR chemical shifts as above.

Additions Involving Bromide 2 and Aldehyde 1d. A. In $\mathbf{H}_{2} \mathbf{O}$. A mixture of 1d ($374 \mathrm{mg}, 1.0 \mathrm{mmol}$), bromide $\mathbf{2}(264 \mathrm{mg}, 1.5 \mathrm{mmol}$), and indium powder ($230 \mathrm{mg}, 2.0$ $\mathrm{mmol})$ in water $(11 \mathrm{ml})$ was stirred at rt for 12 h and worked up in the predescribed manner. The mixture was subjected to flash chromatography on silica gel (elution with petroleum ether/ethyl acetate) gave the products containing a 1:1.2 mixture of 7d and $\mathbf{8 d}$ as a colourless oil ($369 \mathrm{mg}, 78.2 \%$ yield). The components were identified on the basis of their ${ }^{1} \mathrm{H}$ NMR chemical shifts and coupling constants in CDCl 3 (at $400 \mathrm{MHz}): 7 \mathrm{dd}, \delta 7.58-7.07(15 \mathrm{H}), 6.12(\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.47(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.03(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=9.3,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.79-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 9 \mathrm{H}) ; 8 d, \delta$ $7.58-7.07(18 \mathrm{H}), 6.12(\mathrm{t}, J=2.9 \mathrm{~Hz}, 1.2 \mathrm{H}), 5.51(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1.2 \mathrm{H}), 4.53(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 1.2 \mathrm{H}, \mathrm{H}-5), 3.83(\mathrm{dd}, J=9.3,4.6 \mathrm{~Hz}, 1.2 \mathrm{H}), 2.79-2.71(\mathrm{~m}, 1.2 \mathrm{H}), 0.95(\mathrm{~d}, J=$ $11.5 \mathrm{~Hz}, 11 \mathrm{H}) ; \mathbf{7 c + 8 c},{ }^{13} \mathrm{C}$ NMR (101 MHz ,): 170.55, 169.52, 138.84, 137.37, 134.99, 134.84, 134.72, 134.68, 133.32, 131.99, 131.24, 131.11, 129.89, 129.26, 129.14, $128.95,128.90,127.53,127.38,126.97,126.71,126.59,126.54,126.26,124.58$, 123.70, 76.40, 76.20, 75.23, 67.04, 66.13, 64.54, 39.28, 39.01, 28.67, 25.93, 18.35,
18.27. HRMS (ESI) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}\left(\mathrm{M}-\mathrm{H}^{+}\right) 471.1992$; found 471.1987 .
B. In THF. A mixture of $\mathbf{1 d}(374 \mathrm{mg}, 1.0 \mathrm{mmol})$, bromide $\mathbf{2}(264 \mathrm{mg}, 1.5 \mathrm{mmol})$, and indium powder ($230 \mathrm{mg}, 2.0 \mathrm{mmol}$) in THF (11 ml) was stirred 30h. Following product isolation in the predescribed manner, there was isolated 359 mg of a $1: 2$ mixture of $\mathbf{7 d}$ and $\mathbf{8 d}$ (76% yield). The products were identified on the basis of their ${ }^{1} \mathrm{H}$ NMR chemical shifts as above.

Additions Involving Bromide 2 and Aldehyde 1e. A. In $\mathbf{H}_{2} \mathrm{O}$. A mixture of 1 e ($164 \mathrm{mg}, 1.0 \mathrm{mmol}$), bromide $\mathbf{2}(264 \mathrm{mg}, 1.5 \mathrm{mmol}$), and indium powder ($230 \mathrm{mg}, 2.0$ mmol) in water $(11 \mathrm{ml})$ was stirred at rt for 8 h and worked up in the predescribed manner. The mixture was subjected to flash chromatography on silica gel (elution with petroleum ether/ethyl acetate) gave the products containing a $0.55: 1: 0.4$ mixture of $\mathbf{7 e}, \mathbf{8 e}$ and $\mathbf{1 0 e}$ as a colourless oil $(211 \mathrm{mg}, 80.5 \%$ yield). The components were identified by comparison with literature ${ }^{15}$ and their ${ }^{1} \mathrm{H}$ NMR chemical shifts in CDCl 3 (at 400 MHz): $\delta 7.33-7.23(\mathrm{~m}, 10 \mathrm{H}), 6.28(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 0.96 \mathrm{H}), 6.21(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.83(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.55 \mathrm{H}), 5.77(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 0.41 \mathrm{H}), 5.30(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.66-4.56(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{dd}, J=9.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.21(\mathrm{~m}, 4 \mathrm{H}), 4.08-4.00$ $(\mathrm{m}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=9.3,4.9 \mathrm{~Hz}, 0.55 \mathrm{H}), 3.67-3.62(\mathrm{~m}, 0.41 \mathrm{H}), 3.53(\mathrm{tt}, J=10.1$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{~s}, 0.55 \mathrm{H}), 3.24-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.12(\mathrm{~m}$, $1 \mathrm{H}), 2.40(\mathrm{dd}, J=10.4,3.1 \mathrm{~Hz}, 1.37 \mathrm{H}), 2.19(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 0.37 \mathrm{H}), 1.26-1.20(\mathrm{~m}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz,): $169.76,169.60,136.70,136.57,136.47,134.77,134.22$, 133.72, 127.62, 127.57, 127.16, 127.11, 127.02, 126.97, 126.80, 124.37, 123.77, $122.34,75.02,74.28,74.13,73.95,72.48,72.42,69.64,69.47,69.39,66.99,66.49$,
65.91, 41.11, 40.26, 39.81, 28.66, 14.70, 14.67, 13.55. HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}\left(\mathrm{M}-\mathrm{H}^{+}\right)$261.1127; found 261.1160.
B. In THF. A mixture of $\mathbf{1 e}(164 \mathrm{mg}, 1.0 \mathrm{mmol})$, bromide $\mathbf{2}(264 \mathrm{mg}, 1.5 \mathrm{mmol})$, and indium powder ($230 \mathrm{mg}, 2.0 \mathrm{mmol}$) in THF (11 ml) was stirred 24h. Following product isolation in the predescribed manner, there was isolated 186 mg of a 0.7:1:0.75 mixture of $\mathbf{7 e}, \mathbf{8 e}$ and $\mathbf{1 0 e}$ (71% yield). The products were identified on the basis of their ${ }^{1} \mathrm{H}$ NMR chemical shifts as above.

Additions Involving Bromide 2 and Aldehyde 1f. A. In $\mathbf{H}_{2} \mathrm{O}$. A mixture of $\mathbf{1 f}$ ($144 \mathrm{mg}, 1.0 \mathrm{mmol}$), bromide $\mathbf{2}(264 \mathrm{mg}, 1.5 \mathrm{mmol}$), and indium powder ($230 \mathrm{mg}, 2.0$ $\mathrm{mmol})$ in water $(11 \mathrm{ml})$ was stirred at rt for 6 h and worked up in the predescribed manner. The mixture was subjected to flash chromatography on silica gel (elution with petroleum ether/ethyl acetate) gave the products containing a 0.08:0.07:1.0:0.02 mixture of $\mathbf{1 1 - 1 4 f}$ as a white power ($192 \mathrm{mg}, 79.2 \%$ yield). The components were identified by comparison with adducts of $\mathbf{1 g}$ and their ${ }^{1} \mathrm{H}$ NMR chemical shifts in $\operatorname{CDCl} 3$ (at 400 MHz$)$: 13f, m.p : 61-63 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=-0.31\left(c=0.01, \mathrm{CHCl}_{3}\right) ; \delta 6.33(\mathrm{~d}$, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=9.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.29$ $(\mathrm{m}, 1 \mathrm{H}), 3.68-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dtd}, J=7.8,5.1,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.55(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 1 \mathrm{H}), 1.36-1.17(\mathrm{~m}, 4 \mathrm{H}), 0.79(\mathrm{dd}, J=13.6$, $7.2 \mathrm{~Hz}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz,): 169.79, 134.83, 122.73, 73.46, 68.38, 66.19, 41.59, 36.55, 35.44, 28.67, 24.81, 23.79, 9.71, 9.35. HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{COOH}^{-}\right)$287.1495; found 287.1499.
B. In THF. A mixture of $\mathbf{1 f}(144 \mathrm{mg}, 1.0 \mathrm{mmol})$, bromide $\mathbf{2}(264 \mathrm{mg}, 1.5 \mathrm{mmol})$,
and indium powder ($230 \mathrm{mg}, 2.0 \mathrm{mmol}$) in THF (11 ml) was stirred 18 h . Following product isolation in the predescribed manner, there was isolated 174 mg of a 0.08:0:1.0:0.02 mixture of $\mathbf{1 1 - 1 4 f}$ (72% yield). The products were identified on the basis of their ${ }^{1} \mathrm{H}$ NMR chemical shifts as above.

Additions Involving Bromide 2 and Aldehyde 1g. A. In $\mathbf{H}_{2} \mathrm{O}$. A mixture of $\mathbf{1 g}$ ($142 \mathrm{mg}, 1.0 \mathrm{mmol}$), bromide $\mathbf{2}(264 \mathrm{mg}, 1.5 \mathrm{mmol}$), and indium powder ($230 \mathrm{mg}, 2.0$ $\mathrm{mmol})$ in water $(11 \mathrm{ml})$ was stirred at rt for 6 h and worked up in the predescribed manner. The mixture was subjected to flash chromatography on silica gel (elution with petroleum ether/ethyl acetate) gave the products containing a 0.05:0.03:1.0:0.01 mixture of $\mathbf{1 1 - 1 4 g}$ as a white power ($204 \mathrm{mg}, 85 \%$ yield). The components were identified by single-crystal X-ray diffraction. 13g, m.p : 62-64 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=-0.193(c=$ $\left.0.01, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (at 400 MHz$): \delta 6.43(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.60(\mathrm{dd}, J=9.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 1 \mathrm{H})$, $3.33(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=15.1,7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $1.85(\mathrm{dd}, J=17.8,11.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.48(\mathrm{~m}, 5 \mathrm{H}), 1.13(\mathrm{ddd}, J=19.9,13.6,8.0$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz,): 169.68, 134.74, 122.76, 73.08, 69.72, 66.23, 41.59, 39.31, 35.46, 32.16, 31.45, 24.00, 23.84. HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4}$ $\left(\mathrm{M}+\mathrm{COOH}^{-}\right)$285.1338; found 285.1346 .
B. In THF. A mixture of $\mathbf{1 g}(142 \mathrm{mg}, 1.0 \mathrm{mmol})$, bromide $\mathbf{2}(264 \mathrm{mg}, 1.5 \mathrm{mmol})$, and indium powder ($230 \mathrm{mg}, 2.0 \mathrm{mmol}$) in THF (11 ml) was stirred 18 h . Following product isolation in the predescribed manner, there was isolated 173 mg of a 0.06:0.04:1.0:0.01 mixture of $\mathbf{1 1 - 1 4 g}$ (72% yield). The products were identified on the
basis of their ${ }^{1} \mathrm{H}$ NMR chemical shifts as above.

Additions Involving Bromide 2 and Aldehyde 1h. A. In $\mathbf{H}_{2} \mathrm{O}$. A mixture of $\mathbf{1 h}$ ($168 \mathrm{mg}, 1.0 \mathrm{mmol}$), bromide $\mathbf{2}(264 \mathrm{mg}, 1.5 \mathrm{mmol}$), and indium powder ($230 \mathrm{mg}, 2.0$ $\mathrm{mmol})$ in water $(11 \mathrm{ml})$ was stirred at rt for 16 h and worked up in the predescribed manner. The mixture was subjected to flash chromatography on silica gel (elution with petroleum ether/ethyl acetate) resulted in separation of a $10: 1$ mixture of $\mathbf{1 2 h}$ and 14h from the 3,4-syn;4,5-syn diastereomer 13h as a yellow oil (232mg, 87.4\% containing yield). The components were identified by XRD and their ${ }^{1} \mathrm{H}$ NMR analyses in CDCl3 (at 400 MHz): 13h, $\delta 6.41(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.05(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.31(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{ddd}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-$ $3.31(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{dd}, J=11.5$, $4.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 4 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}) ; \mathbf{1 2 h}, \delta 6.40$ $(\mathrm{d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.39(\mathrm{~m}$, 2H), $3.53(\mathrm{td}, J=7.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.28(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ $(\mathrm{d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 4 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.44(\mathrm{~m}$, $1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}) ; \mathbf{1 4 h}, \delta 6.40(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathbf{1 3 h},{ }^{13} \mathrm{C}$ NMR (101 MHz,): 170.16, 134.20, 132.56, 125.01, 123.03, 70.31, 66.64, 63.34, $62.95,42.71,38.27,25.68,23.39,17.68,17.40 ; \mathbf{1 2 h}+14 h,{ }^{13} \mathrm{C}$ NMR (101 MHz,): $170.92,134.40,132.38,125.52,123.26,70.49,67.52,63.29,61.05,43.62,38.21$, 25.66, 23.77, 17.69, 16.66. HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right)$267.1596; found 267.1567.

Additions Involving Bromide 2 and Aldehyde 1i. A. In $\mathbf{H}_{2} \mathrm{O}$. A mixture of $\mathbf{1 i}$ ($172 \mathrm{mg}, 0.81 \mathrm{mmol}$), bromide $\mathbf{2}(214 \mathrm{mg}, 1.21 \mathrm{mmol})$, and indium powder $(186 \mathrm{mg}$, $1.62 \mathrm{mmol})$ in water $(8.9 \mathrm{ml})$ was stirred at rt for 12 h and worked up in the predescribed manner. The mixture was subjected to flash chromatography on silica gel (elution with petroleum ether/ethyl acetate) gave the only products $\mathbf{1 2 i}$ as a white solid ($128 \mathrm{mg}, 70 \%$ yield). The absolute configuration of $\mathbf{1 2 i}$ was determined by comparison with literature ${ }^{12} .[\alpha]_{\mathrm{D}}{ }^{20}=-34.4\left(c=1.18, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 1.11(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.76-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.96(\mathrm{dt}, J=4.6,12.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.06 (ddd, $J=3.1,5.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{qd}, J=6.7,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-3.01(\mathrm{~m}, 2 \mathrm{H})$, $3.34(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=3.2,4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.55(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 5.69$ $(\mathrm{d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.5$, $23.2,36.4,37.7,45.4,46.2,50.7,55.4,63.8,79.5,80.8,95.6,112.7,123.0,136.3$, 144.0, 170.3; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{5}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$333.1672, found 333.1667.

Michael addition reaction of $\mathbf{1 1 - 1 4 g}$ with phenthiol. To a solution of $\mathbf{1 1 - 1 4 g}$ ($100 \mathrm{mg}, 0.42 \mathrm{mmol}$) obtained from entry 20 and DMAP ($5.0 \mathrm{mg}, 0.1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.2 \mathrm{~mL})$ was added benzenethiol ($146 \mathrm{mg}, 3.2$ equiv) at room temperature. After stirring for 3 h at that temperature, the solution was concentrated directly, and the crude oil was chromatographed to give two major thioethers $\mathbf{1 3 g}{ }^{\prime}(96.6 \mathrm{mg})$ and $\mathbf{1 3 g}{ }^{\prime}(19.4 \mathrm{mg})$ which were crystalline. 13g', m.p : 53-55 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=0.023(c=0.01$, CHCl_{3}); HPLC: $\mathrm{t}_{\mathrm{R}}=4.797 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR (at 400 MHz): $\delta 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{dd}$, $J=10.3,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{~d}, J=$
$4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=14.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=14.0$, $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{ddd}, J=9.4,7.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{qd}, J=8.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.48$ $(\mathrm{d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 1 \mathrm{H}), 1.78(\mathrm{dd}, J=11.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.63(\mathrm{~m}, 3 \mathrm{H})$, $1.60-1.42(\mathrm{~m}, 5 \mathrm{H}), 1.05-0.98(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{ddd}, J=7.4,7.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.84-$ $0.75(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3}): 176.26, 134.08, 128.58, 128.32, 125.87, $71.28,71.15,65.56,42.68,40.50,38.92,35.36,32.56,32.19,31.29,23.98,23.88$; 13g', m.p : 56-58 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=0.019\left(c=0.01, \mathrm{CHCl}_{3}\right) ; \mathrm{HPLC}: \mathrm{t}_{\mathrm{R}}=4.449 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR (at 400MHz): $\delta 7.32(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 1 \mathrm{H})$, $4.36(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=11.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.46$ $(\mathrm{dd}, J=13.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=13.4,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-$ $2.71(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.44(\mathrm{~m}, 6 \mathrm{H}), 1.09-1.00(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3}): $176.50,134.00,128.72,128.23,125.81,80.70,68.85,58.66$, $44.10,39.83,38.84,35.52,33.58,31.93,31.45,24.04,23.83$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{COOH}^{-}\right) 395.1528$, found 395.1535 .

NMR Spectra

C13CPD

FRoton
EL3CPG
FROTON

PROLCN
C13CP

