Ethynyl Thiophene Appended Unsymmetrical Zinc Porphyrin Sensitizers for Dye-Sensitized Solar Cells: Synthesis, Spectral, Electrochemical, and Photovoltaic Properties

P. Silviya Reeta, ${ }^{a}$ L. Giribabu, ${ }^{a}{ }^{*}$ S.Senthilarasu, ${ }^{\text {b }}$ Min-Hung Hsu, ${ }^{\text {b }}$ D. Kishore

Kumar, ${ }^{\text {b }}$ Hari M. Upadhyaya, ${ }^{\mathrm{b}^{*}}$ Neil Robertson ${ }^{\text {c* }}$ and Tracy Hewat ${ }^{c}$
${ }^{a}$ Inorganic \& Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007 (A.P.), India.
${ }^{b}$ Energy Conversion Laboratory (ECL), Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS.
${ }^{c}$ School of Chemistry and EaStCHEM, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH93JJ, UK.
*Author for correspondence E-mail: giribabu@iict.res.in, Phone: +91-40-27193186, fax: +91-40-27160921

Synthetic Scheme of PYR-Por-CA and PYR-Por-MA

(i) DMF, $\mathrm{K}_{2} \mathrm{CO}_{3}$, reflux 4h (iia) Dipyrromethane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, TFA, RT (iib) DDQ, TEA, RT (iii) NBS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT (iva,b) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Cs}(\mathrm{CO})_{3}$, Toluene, reflux, 12h (va) NBS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT (vb) $\mathrm{Zn}(\mathrm{OAc})_{2}, \mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}$, reflux, 2h (vi) TMSA, TEA, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}, \mathrm{CuI}, 50^{\circ} \mathrm{C}, 8 \mathrm{~h}$ (vii) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT, 3 h (viii) 5 -bromothiophene-2-carboxaldehyde, TEA, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$, $\mathrm{CuI}, 50{ }^{\circ} \mathrm{C}$, 8h (ix) Cyanoacetic acid (PYR-Por-CA) or malonic acid (PYR-Por-MA), $\mathrm{CHCl} / \mathrm{CH}_{3} \mathrm{CN}(3: 1)$, piperidine, reflux, 8 h .

Synthetic Scheme of FLU-Por-CA and FLU-Por-MA

(i) DMF, $\mathrm{K}_{2} \mathrm{CO}_{3}$, reflux 4h (iia) Dipyrromethane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, TFA, RT (iib) DDQ, TEA, RT (iii) NBS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT (iva,b) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Cs}(\mathrm{CO})_{3}$, Toluene, reflux, 12 h (va) NBS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT (vb) $\mathrm{Zn}(\mathrm{OAc})_{2}, \mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}$, reflux, 2h (vi) TMSA, TEA, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}, \mathrm{CuI}, 50{ }^{\circ} \mathrm{C}, 8 \mathrm{~h}$ (vii) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT, 3h (viii) 5-bromothiophene-2-carboxaldehyde, TEA, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$, $\mathrm{CuI}, 50{ }^{\circ} \mathrm{C}, 8 \mathrm{~h}$ (ix) Cyanoacetic acid (FLU-Por-CA) or malonic acid (FLU-Por-MA), $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{CN}(3: 1)$, piperidine, reflux, 8 h .

Detailed Synthetic Procedure:

4-(hexyloxy)-3,5-dimethoxybenzaldehyde (2)

3,5-dimethoxy-4-hydroxy-benzaldehyde ($5 \mathrm{~g}, 0.0275$ mole), 1-hexylbromide ($7.7 \mathrm{ml}, 0.055$ mole) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ were added to 10 ml of dried, dry DMF under nitrogen atmosphere. The reaction mixture was heated to reflux for 4 h . After cooling to room temperature, the solution was extracted with ice cold water and ether. The organic phase was collected and evaporated to dryness. The brown liquid was purified by silica gel column using hexane $/ \mathrm{CHCl}_{3}(2: 1 \mathrm{v} / \mathrm{v})$ mixture as eluent to yield pale yellow oil (92\%). Elemental analysis of Anal. Calcd. For $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4} \%$ (266.33): C, 67.64; H, 8.33. Found: C, 67.60; H, 8.30. ESI-MS (m/z): $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4}$ [266.33]: $\mathrm{M}^{+} 266$ (100\%). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 9.87(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 2 \mathrm{H}), 3.94(\mathrm{~m}, 2 \mathrm{H})$, 3.73 (s, 6H), 1.75 (m, 2H), 1.29 (m, 6H), 0.96 (m, 3H).

5,15-Bis[4-(hexyloxy)-3,5-dimethoxypheyl]porphyrin (3)

Lindsey method was adopted for the synthesis of this porphyrin. This route involves the condensation of dipyrromethane and the substituted benzaldehyde in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction mixture was degassed for 15 min by purging with nitrogen, followed by drop wise addition of trifluoro acetic acid (TFA). The reaction mixture was protected from ambient light and allowed to stir at RT for 3 h under nitrogen atmosphere. DDQ was added and the reaction mixture was allowed to stir for further 1 h followed by quenching the acid catalyst using triethyl acetate (TEA). The product was purified by silica gel column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluant to yield purple powder(15% yield). Elemental analysis of Anal. Calcd. For $\mathrm{C}_{48} \mathrm{H}_{54} \mathrm{~N}_{4} \mathrm{O}_{6} \%$ (782.96): C, 73.63; H, 6.95; N, 7.16. Found: C, 73.60; H, 6.97; N, 7.20. ESI-MS (m/z): $\mathrm{C}_{48} \mathrm{H}_{54} \mathrm{~N}_{4} \mathrm{O}_{6}$ [782.96]: $\mathrm{M}^{+} 784$ (100\%). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 10.35$ (s, 2H), 9.05 (dd, 8H), $7.51(\mathrm{~s}, 4 \mathrm{H}), 4.15(\mathrm{~m}, 4 \mathrm{H}), 3.95(\mathrm{~s}, 12 \mathrm{H}), 2.00(\mathrm{~m}, 4 \mathrm{H}), 1.55(\mathrm{~m}, 12 \mathrm{H}), 0.96(\mathrm{~m}, 6 \mathrm{H}),-3.05(\mathrm{~b}$, 2H). UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\mathrm{nm})\left(\log \varepsilon \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right): 410(5.81)$, 504(4.20), $539(3.8), 577(3.74)$, 632(3.21).

5-bromo-10,20- Bis[4-(hexyloxy)-3,5-dimethoxypheyl]porphyrin (4)

Porphyrin (3) ($100 \mathrm{mg}, 0.13 \mathrm{mmol}$) was dissolved in 80 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution was cooled to $0^{\circ} \mathrm{C}$. To this N -bromosuccinamide ($28 \mathrm{mg}, 0.16 \mathrm{mmol}$ in 8 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), was added drop
wise. The reaction was allowed to stir for 12 min , washed with water and purified by silica gel column chromatography using $\mathrm{CHCl}_{3} / \operatorname{Hexane}(3: 1 \mathrm{v} / \mathrm{v})$ as the eluent. The second band was the desired product (50% yield). Elemental analysis of Anal. Calcd. For $\mathrm{C}_{48} \mathrm{H}_{53} \mathrm{BrN}_{4} \mathrm{O}_{6} \%$ (861.86): C, 66.89; H, 6.20; N, 6.50. Found: C, 66.90; H, 6.30; N, 7.50. ESI-MS (m/z): $\mathrm{C}_{48} \mathrm{H}_{53} \mathrm{BrN}_{4} \mathrm{O}_{6}$ [861.86]: $\mathrm{M}^{+}-\mathrm{Br} 784$ (100\%). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 10.35(\mathrm{~s}, 1 \mathrm{H}), 9.82(\mathrm{~d}, 2 \mathrm{H}), 9.15(\mathrm{~d}, 2 \mathrm{H})$, $9.00(\mathrm{dd}, 4 \mathrm{H}), 7.45(\mathrm{~s}, 4 \mathrm{H}), 4.20(\mathrm{~m}, 4 \mathrm{H}), 3.95(\mathrm{~s}, 12 \mathrm{H}), 2.00(\mathrm{~m}, 4 \mathrm{H}), 1.55(\mathrm{~m}, 12 \mathrm{H}), 0.97(\mathrm{~m}$, $6 \mathrm{H}),-3.00(\mathrm{~b}, 2 \mathrm{H})$. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\mathrm{nm})\left(\log \varepsilon \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right): 419(5.75)$, 514(3.30), 549(3.75), 589(3.71), 646(4.20).

5-pyrenyl-10,20- Bis[4-(hexyloxy)-3,5-dimethoxypheyl]porphyrin (5a)

Monobromo porphyrin (4) (190 mg, 0.24 mmol$)$ was dissolved in 40 ml of dry Toluene, to which $\mathrm{CsCO}_{3}(393.6 \mathrm{mg}, 1.2 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.25$ equivalents) and 1-pyrenylborane ($218 \mathrm{mg}, 0.713$ mmol) were added and the reaction mixture was refluxed under nitrogen atmosphere for 12 h . After cooling to RT, the crude mixture was purified using silica gel column with EtOAc/Hex ($1: 4 \mathrm{v} / \mathrm{v}$) to afford the desired product (90% yield). Elemental analysis of Anal. Calcd. For $\mathrm{C}_{64} \mathrm{H}_{62} \mathrm{~N}_{4} \mathrm{O}_{6} \%$ (983.20): C, 78.18; H, 6.36; N, 5.70. Found: C, 78.20; H, 6.33; N, 5.68. ESI-MS $(\mathrm{m} / \mathrm{z}): \mathrm{C}_{64} \mathrm{H}_{62} \mathrm{~N}_{4} \mathrm{O}_{6}$ [983.20]: M 984 (100\%). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 10.25(\mathrm{~s}, 1 \mathrm{H}), 9.37(\mathrm{~d}$, $2 \mathrm{H}), 9.14(\mathrm{~d}, 2 \mathrm{H}), 8.90(\mathrm{dd}, 2 \mathrm{H}), 8.70(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~m}, 6 \mathrm{H}), 8.05(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~m}, 6 \mathrm{H}), 4.28(\mathrm{~m}$, $4 \mathrm{H}), 3.95(\mathrm{~s}, 12 \mathrm{H}), 1.99(\mathrm{~m}, 4 \mathrm{H}), 1.55(\mathrm{~m}, 12 \mathrm{H}), 0.97(\mathrm{~m}, 6 \mathrm{H}),-2.78(\mathrm{~b}, 2 \mathrm{H})$. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $\lambda_{\max }(\mathrm{nm})\left(\log \varepsilon \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right): 419$ (5.81), 511 (4.44), 547(3.85), 584 (3.81), 640 (3.33).

5-fluorenyl-10,20- Bis[4-(hexyloxy)-3,5-dimethoxypheyl]porphyrin (5b)
This compound was synthesized by adopting a similar procedure that was used to prepare $\mathbf{5 a} .{ }^{1} \mathrm{H}$ $\operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=2.95(\mathrm{~s}, 2 \mathrm{H}), 0.78(\mathrm{~m}, 12 \mathrm{H}), 0.98(\mathrm{~m}, 8 \mathrm{H}), 1.25(\mathrm{~m}, 8 \mathrm{H}), 1.45(\mathrm{~m}$, $10 \mathrm{H}), 1.60(\mathrm{~m}, 4 \mathrm{H}), 2.1(\mathrm{~m}, 8 \mathrm{H}), 3.95(\mathrm{~s}, 12 \mathrm{H}), 4.31(\mathrm{t}, 4 \mathrm{H}), 7.50(\mathrm{~m}, 7 \mathrm{H}), 7.91-8.29(\mathrm{~m}, 4 \mathrm{H})$, 8.94(d, 4H), 9.13(d, 2 H$), 9.35(\mathrm{~s}, 2 \mathrm{H}), 10.21(\mathrm{~s}, 1 \mathrm{H})$. ESI-MS: $m / z \mathrm{C}_{73} \mathrm{H}_{86} \mathrm{~N}_{4} \mathrm{O}_{6}$: calculated : 1115.49, found : $1115\left[\mathrm{M}^{+}\right]$. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\mathrm{nm})(\log \varepsilon): 272$ (1.5), 306 (4.4), 418 (5.9), 512 (4.3), 547 (3.9), 587 (3.8), 641(3.5).

Pyrenyl porphyrin (5a) ($65 \mathrm{mg}, 0.065 \mathrm{mmol}$) was dissolved in 30 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution was cooled to $0^{\circ} \mathrm{C}$. To this N -bromosuccinamide ($14.3 \mathrm{mg}, 0.078 \mathrm{mmol}$ dissolved in 3 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), was added drop wise. The reaction was allowed to stir for 12 min , washed with water and purified by silica gel column chromatography using $\mathrm{CHCl}_{3} / \mathrm{Hexane}(3: 1 \mathrm{v} / \mathrm{v})$ as the eluent to get the desired product in 80% yield. Elemental analysis of Anal. Calcd. For $\mathrm{C}_{64} \mathrm{H}_{61} \mathrm{BrN}_{4} \mathrm{O}_{6} \%$ (1060.37): C, 72.37; H, 5.79; N, 5.28. Found: C, 72.35; H, 5.80; N, 5.30. ESI-MS (m/z): $\mathrm{C}_{64} \mathrm{H}_{61} \mathrm{BrN}_{4} \mathrm{O}_{6}$ [1060.37]: $\mathrm{M}^{3+} 1057$ (50\%), [$\left.\mathrm{C}_{64} \mathrm{H}_{61} \mathrm{BrN}_{4} \mathrm{O}_{6}-\mathrm{Br}\right] 984$ (100\%). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, סppm): 9.71 (d, 2H), 9.14 (d, 2H), 8.90 (dd, 2H), 8.70 (s, 1H), 8.46 (m, 6H), 8.05 (m, 2H), 7.45 $(\mathrm{m}, 6 \mathrm{H}), 4.27(\mathrm{~m}, 4 \mathrm{H}), 3.89(\mathrm{~s}, 12 \mathrm{H}), 1.99(\mathrm{~m}, 4 \mathrm{H}), 1.55(\mathrm{~m}, 12 \mathrm{H}), 0.97(\mathrm{~m}, 6 \mathrm{H}),-2.55(\mathrm{~b}, 2 \mathrm{H})$. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\mathrm{nm})\left(\log \varepsilon \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right): 427(5.90)$, 521(4.21), 557(3.80), 597(3.67), 654(3.50).

5-fluorenyl-15-bromo-10,20-Bis[4-(hexyloxy)-3,5-dimethoxypheyl]porphyrin (6b)

This compound was synthesized by adopting a similar procedure that was used to prepare $\mathbf{6 a}{ }^{1} \mathrm{H}$ $\operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=0.81(\mathrm{~m}, 12 \mathrm{H}), 0.99(\mathrm{~m}, 8 \mathrm{H}), 1.22(\mathrm{~m}, 8 \mathrm{H}), 1.42(\mathrm{~m}, 10 \mathrm{H}), 1.62(\mathrm{~m}$, 4H), $2.04(\mathrm{~m}, 8 \mathrm{H}), 3.99(\mathrm{~s}, 12 \mathrm{H}), 4.29(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{~m}, 7 \mathrm{H}), 7.98-8.27(\mathrm{~m}, 4 \mathrm{H}), 8.99(\mathrm{~d}, 4 \mathrm{H})$, $9.05(\mathrm{~d}, 2 \mathrm{H}), 9.29(\mathrm{~s}, 2 \mathrm{H})$. ESI-MS: $m / z \quad \mathrm{C}_{73} \mathrm{H}_{85} \mathrm{BrN}_{4} \mathrm{O}_{6}$: calculated : 1194.38, found : $1195\left[(\mathrm{M}+\mathrm{H})^{+}\right] . \operatorname{UV}-\operatorname{Vis}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\mathrm{nm})(\log \varepsilon): 268$ (1.5), 307(4.4), 425(5.9), 521(4.3), 557(4.1), 599(3.7), 655(3.7).

5-pyrenyl-15-bromo-10,20- Bis[4-(hexyloxy)-3,5-dimethoxypheyl]porphyrin zinc(II) (7a)

Porphyrin (6a) ($50 \mathrm{mg}, 0.051 \mathrm{mmol}$) and $\mathrm{Zn}(\mathrm{OAc})_{2}(0.51 \mathrm{mmol})$ were dissolved in $\mathrm{CHCl}_{3} / \mathrm{MeOH}(4: 1 \mathrm{v} / \mathrm{v})$ mixture and heated to reflux until Q-band absorption has changed. Then the reaction mixture cooled to RT , washed with water and recrystallised from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ mixture to yield 95% of 7 . Elemental analysis of Anal. Calcd. For $\mathrm{C}_{64} \mathrm{H}_{59} \mathrm{BrN}_{4} \mathrm{O}_{6} \mathrm{Zn} \%$ (1125.47): C, 68.30; H, 5.28; N, 4.98. Found: C, 68.32; H, 5.30; N, 5.00. ESI-MS (m/z): $\mathrm{C}_{64} \mathrm{H}_{59} \mathrm{BrN}_{4} \mathrm{O}_{6} \mathrm{Zn}$ [1125.47]: M 1126 (50\%). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 9.77$ (d, 2H), 9.10 (d, 2H), 8.81 (dd, 2H), $8.70(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~m}, 6 \mathrm{H}), 8.05(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~m}, 6 \mathrm{H}), 4.18(\mathrm{~m}, 4 \mathrm{H}), 3.87(\mathrm{~s}, 12 \mathrm{H}), 1.99(\mathrm{~m}$, $4 \mathrm{H}), 1.55(\mathrm{~m}, 12 \mathrm{H}), 0.97(\mathrm{~m}, 6 \mathrm{H})$. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\mathrm{nm})\left(\log \varepsilon \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) 428(5.91)$, 554(4.22), 593(3.61).

5-fluorenyl-15-bromo-10,20- Bis[4-(hexyloxy)-3,5-dimethoxypheyl]porphyrin $\operatorname{zinc}(I I)(7 b)$

This compound was synthesized by adopting a similar procedure that was used to prepare $7 \mathbf{7 a} .{ }^{1} \mathrm{H}$ $\operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=0.88(\mathrm{~m}, 12 \mathrm{H}), 0.99(\mathrm{~m}, 8 \mathrm{H}), 1.30(\mathrm{~m}, 8 \mathrm{H}), 1.45(\mathrm{~m}, 10 \mathrm{H}), 1.64(\mathrm{~m}$, $4 \mathrm{H}), 1.95(\mathrm{~m}, 4 \mathrm{H}), 2.08(\mathrm{~m}, 4 \mathrm{H}), 3.95(\mathrm{~s}, 12 \mathrm{H}), 4.26(\mathrm{t}, 4 \mathrm{H}), 7.44(\mathrm{~m}, 7 \mathrm{H}), 7.92-8.20(\mathrm{~m}, 4 \mathrm{H}), 8.97$ $(\mathrm{d}, 4 \mathrm{H}), 9.10(\mathrm{~d}, 2 \mathrm{H}), 9.80(\mathrm{~s}, 2 \mathrm{H}), 10.21(\mathrm{~s}, 1 \mathrm{H})$. ESI-MS: $m / z \mathrm{C}_{73} \mathrm{H}_{83} \mathrm{BrN}_{4} \mathrm{O}_{6}$: calculated : 1257.789, found : $1258\left[(\mathrm{M}+\mathrm{H})^{+}\right] . \operatorname{UV}-\operatorname{Vis}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\mathrm{nm})(\log \varepsilon): 263(4.4), 307(4.3)$, 426(5.9), 553(4.3), 594(4.4).

5-pyrenyl-15-trimethylsilylethynyl-10,20-Bis[4-(hexyloxy)-3,5-dimethoxypheyl]porphyrin $\operatorname{zinc}(I I)$ (8a)

Porphyrin (7a) ($64 \mathrm{mg}, 0.056 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(6.91 \mathrm{mg}, 0.006 \mathrm{mmol})$ were dissolved in 10 ml of dry triethyl amine (TEA) to which trimethylsilylacetylene $(0.036 \mathrm{ml}, 0.28 \mathrm{mmol})$ and $\mathrm{CuI}(1.14 \mathrm{mg}, 0.006 \mathrm{mmol})$ were added and the solution was heated to $50^{\circ} \mathrm{C}$ for 8 h . After cooling to RT , the crude mixture was washed with water and extracted with CHCl_{3}. The green product was subjected to silica gel column with $\mathrm{CHCl}_{3} / \operatorname{Hexane}(3: 1 \mathrm{v} / \mathrm{v})$ as the eluent to afford the desired product (85% yield). Elemental analysis of Anal. Calcd. For $\mathrm{C}_{69} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{SiZn} \%$ (1142.77): C, 72.52; H, 6.00; N, 4.90. Found: C, 72.55; H, 5.98; N, 4.91. ESI-MS (m/z): $\mathrm{C}_{69} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{SiZn}$ [1142.77]: M^{+}(35\%). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 9.73$ (d, 2H), 9.03 (d, 2H), 8.90 (dd, 2H), $8.70(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~m}, 6 \mathrm{H}), 8.05(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~m}, 6 \mathrm{H}), 4.18(\mathrm{~m}, 4 \mathrm{H}), 3.96(\mathrm{~s}, 12 \mathrm{H})$, $1.93(\mathrm{~m}, 4 \mathrm{H}), 1.44(\mathrm{~m}, 12 \mathrm{H}), 0.97(\mathrm{~m}, 6 \mathrm{H}), 0.63(\mathrm{~s}, 9 \mathrm{H})$. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\mathrm{nm})\left(\log \varepsilon \mathrm{M}^{-1}\right.$ $\left.\mathrm{cm}^{-1}\right): 434(5.83), 561(4.22), 603(3.91)$.

5-fluorenyl-15-trimethylsilylethynyl-10,20-Bis[4-(hexyloxy)-3,5-dimethoxypheyl] porphyrin $\operatorname{zinc}(I I)(\mathbf{8 b})$

This compound was synthesized by adopting a similar procedure that was used to prepare $\mathbf{8 a} .{ }^{1} \mathrm{H}$ $\operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=0.64(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~m}, 12 \mathrm{H}), 0.98(\mathrm{~m}, 8 \mathrm{H}), 1.16(\mathrm{~m}, 8 \mathrm{H}), 1.45(\mathrm{~m}$, $10 \mathrm{H}), 1.46(\mathrm{~m}, 4 \mathrm{H}), 1.99(\mathrm{~m}, 4 \mathrm{H}), 2.11(\mathrm{~m}, 4 \mathrm{H}), 3.95(\mathrm{~s}, 12 \mathrm{H}), 4.26(\mathrm{t}, 4 \mathrm{H}), 7.44(\mathrm{~m}, 7 \mathrm{H}), 7.92-$ $8.20(\mathrm{~m}, 4 \mathrm{H}), 8.97(\mathrm{~d}, 4 \mathrm{H}), 9.10(\mathrm{~d}, 2 \mathrm{H}), 9.80(\mathrm{~s}, 2 \mathrm{H}), 10.21(\mathrm{~s}, 1 \mathrm{H})$. ESI-MS: m / z
$\mathrm{C}_{78} \mathrm{H}_{92} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{SiZn}$: calculated : 1275.08 , found : $1275\left[\mathrm{M}^{+}\right] . \mathrm{UV}-\mathrm{Vis}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\mathrm{nm})(\log \varepsilon)$: 265(4.3), 307(4.3), 434(5.6), 563(4.2), 605(4.0).

5-pyrenyl-15-ethynyl-10,20-Bis[4-(hexyloxy)-3,5-dimethoxypheyl]porphyrin zinc(II) (9a)

Porphyrin (8a) ($65 \mathrm{mg}, 0.057 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{~g})$ were dissolved in 30 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ mixture and allowed to stir at RT fo 5 h . The crude mixture was filtered to remove $\mathrm{K}_{2} \mathrm{CO}_{3}$, washed with water and extracted with CHCl_{3}. Purification by silica gel column using $\mathrm{CHCl}_{3} /$ Hexane ($4: 1 \mathrm{v} / \mathrm{v}$) afforded a more polar green product (90% yield). Elemental analysis of Anal. Calcd. For $\mathrm{C}_{66} \mathrm{H}_{60} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Zn} \%$ (1070.59): C, 74.04; H, 5.65; N, 5.23. Found: C, 74.00; H, 5.68; N, 5.20. ESI-MS (m/z): $\mathrm{C}_{66} \mathrm{H}_{60} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Zn}$ [1070.59]: M+Na (100). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right):$ $9.82(\mathrm{~d}, 2 \mathrm{H}), 9.12(\mathrm{~d}, 2 \mathrm{H}), 8.80(\mathrm{dd}, 2 \mathrm{H}), 8.70(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~m}, 6 \mathrm{H}), 8.05(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~m}, 6 \mathrm{H})$, $4.23(\mathrm{~m}, 4 \mathrm{H}), 3.91(\mathrm{~s}, 12 \mathrm{H}), 1.93(\mathrm{~m}, 4 \mathrm{H}), 1.44(\mathrm{~m}, 12 \mathrm{H}), 0.97(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{UV}-\mathrm{Vis}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }$ $(\mathrm{nm})\left(\log \varepsilon \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right): 431(5.85)$, 557(4.54), 599(4.13).

5-fluorenyl-15-ethynyl-10,20-Bis[4-(hexyloxy)-3,5-dimethoxypheyl]porphyrin zinc(II) (9b)

This compound was synthesized by adopting a similar procedure that was used to prepare $\mathbf{9 a} .{ }^{1} \mathrm{H}$ $\operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=0.86(\mathrm{~m}, 12 \mathrm{H}), 0.99(\mathrm{~m}, 8 \mathrm{H}), 1.44(\mathrm{~m}, 8 \mathrm{H}), 1.55(\mathrm{~m}, 10 \mathrm{H}), 1.65(\mathrm{~m}$, $4 \mathrm{H}), 1.99(\mathrm{~m}, 4 \mathrm{H}), 2.11(\mathrm{~m}, 4 \mathrm{H}), 3.67(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 12 \mathrm{H}), 4.33(\mathrm{t}, 4 \mathrm{H}), 7.46(\mathrm{~m}, 7 \mathrm{H}), 7.90-8.25$ (m, 4H), $8.98(\mathrm{~d}, 4 \mathrm{H}), 9.12(\mathrm{~d}, 2 \mathrm{H}), 9.45(\mathrm{~s}, 2 \mathrm{H})$, . ESI-MS: $m / z \mathrm{C}_{75} \mathrm{H}_{84} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Zn}$: calculated : 1202.90 , found : $1204\left[(\mathrm{M}+2 \mathrm{H})^{+}\right] . \operatorname{UV}-\operatorname{Vis}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\mathrm{nm})(\log \varepsilon): 267(4.5)$, 308(4.4), 430(5.7), 557(4.3), 600(5.0).

5-pyrenyl-15-(5-formylthiophene-2-yl)-10,20-Bis[4-(hexyloxy)-3,5-dimethoxypheyl]porphyrin $\operatorname{zinc}(I I)$ (10a)

Porphyrin 9a ($50 \mathrm{mg}, 0.047 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(5,75 \mathrm{mg}, 0.005 \mathrm{mmol})$ were dissolved in 10 ml of dry TEA to which 5-bromothiophene-2-carboxaldehyde ($44.16 \mathrm{mg}, 0.025 \mathrm{ml}, 0.23$ mmol) and $\mathrm{CuI}\left(0.95 \mathrm{mg}, 0.005 \mathrm{mmol}\right.$) were added and the solution was heated to $50^{\circ} \mathrm{C}$ for 8 h . After cooling to RT, the crude mixture was washed with water and extracted with CHCl_{3}. The green product was purified using silica gel column with $\mathrm{CHCl}_{3} / \mathrm{Hexane}(3: 1 \mathrm{v} / \mathrm{v})$ as the eluant to afford the desired product (85% yield). Elemental analysis of Anal. Calcd. For $\mathrm{C}_{71} \mathrm{H}_{62} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{SZn}_{0}$ (1180.72): C, 72.22; H, 5.29; N, 4.75. Found: C, 72.20; H, 5.30; N, 4.70. ESI-MS (m/z):
$\mathrm{C}_{71} \mathrm{H}_{62} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{SZn}[1180.59]: \mathrm{M}(100 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 10.11(\mathrm{~s}, 1 \mathrm{H}), 9.90(\mathrm{~d}, 1 \mathrm{H})$, $9.77(\mathrm{~s}, 1 \mathrm{H}), 9.20(\mathrm{~d}, 2 \mathrm{H}), 8.77(\mathrm{~m}, 3 \mathrm{H}), 8.50(\mathrm{~m}, 6 \mathrm{H}), 8.21(\mathrm{~m}, 2 \mathrm{H}), 7.83(\mathrm{~m}, 4 \mathrm{H}), 7.45(\mathrm{~m}, 7 \mathrm{H})$, $6.90(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{~m}, 4 \mathrm{H}), 3.93(\mathrm{~s}, 12 \mathrm{H}), 1.93(\mathrm{~m}, 4 \mathrm{H}), 1.44(\mathrm{~m}, 12 \mathrm{H}), 0.97(\mathrm{~m}, 6 \mathrm{H})$. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}(\mathrm{nm})\left(\log \varepsilon \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right): 426(5.83), 454(4.83), 566(3.82), 623(4.00)$.

5-fluorenyl-15-(5-formylthiophene-2-yl)-10,20-Bis[4-(hexyloxy)-3,5-dimethoxypheyl]porphyrin zinc(II) (10b)

This compound was synthesized by adopting a similar procedure that was used to prepare 10a. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=0.87(\mathrm{~m}, 12 \mathrm{H}), 0.99(\mathrm{~m}, 8 \mathrm{H}), 1.43(\mathrm{~m}, 8 \mathrm{H}), 1.56(\mathrm{~m}, 10 \mathrm{H}), 1.63$ $(\mathrm{m}, 4 \mathrm{H}), 2.00(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{~m}, 4 \mathrm{H}), 3.92(\mathrm{~s}, 12 \mathrm{H}), 4.28(\mathrm{t}, 4 \mathrm{H}), 7.15(\mathrm{~d}, 1 \mathrm{H}), 7.35(\mathrm{~d}, 1 \mathrm{H})$, 7.44(m, 7H), 7.92-8.23 (m, 4H), $9.03(\mathrm{~m}, 4 \mathrm{H}), 9.48(\mathrm{~d}, 2 \mathrm{H}), 9.54(\mathrm{~s}, 2 \mathrm{H}), 9.64(\mathrm{~s}, 1 \mathrm{H})$. ESI-MS: $m / z \mathrm{C}_{80} \mathrm{H}_{86} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{SZn}$: calculated : 1313.04, found : $1315\left[(\mathrm{M}+\mathrm{H})^{+}\right]$. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\mathrm{nm})($ $\log \varepsilon): 267(4.5), 308(4.5), 423(5.6), 453(\mathrm{sh}, 5.1), 551(4.2), 621(4.0)$.

5-pyrenyl-15-[(5-formylthiophene-2-yl)-2-cyanoacrylicacid]-10,20-Bis[4-(hexyloxy)-3,5dimethoxypheyl]porphyrin zinc(II) PYR-Por-CA: Porphyrin 10a ($50 \mathrm{mg}, 0.042 \mathrm{mmol}$) was dissolved in 30 ml of $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CHCl}_{3}$ (3:1), to which piperidine and cyanoacetic acid (0.21 mmol) were added. The reaction mixture was refluxed for 8 h . After cooling to RT, the reaction mixture was washed with water and 0.1 M HCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The product was purified with silica gel column using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(3: 1 \mathrm{v} / \mathrm{v})$ as the eluant to afford the desired product (85% yield). Elemental analysis of Anal. Calcd. For $\mathrm{C}_{74} \mathrm{H}_{63} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{SZn} \%$ (1247.77): C, 71.23; H, 5.09; N, 5.61 Found: C, 71.25; H, 5.10; N, 5.65. ESI-MS (m/z): $\mathrm{C}_{74} \mathrm{H}_{63} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{SZn}$ [1246]: $\mathrm{M}^{+}(100 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 9.67(\mathrm{~s}, 2 \mathrm{H}), 9.08(\mathrm{~s}, 2 \mathrm{H}), 8.73(\mathrm{~m}, 4 \mathrm{H}), 8.29(\mathrm{~m}$, $6 \mathrm{H}), 8.11(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~m}, 8 \mathrm{H}), 4.17(\mathrm{~m}, 4 \mathrm{H}), 3.85(\mathrm{~s}, 12 \mathrm{H}), 1.93(\mathrm{~m}, 4 \mathrm{H}), 1.44(\mathrm{~m}, 12 \mathrm{H}), 0.97$ $(\mathrm{m}, 6 \mathrm{H})$. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda \max (\mathrm{nm})\left(\log \varepsilon \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right): 447(5.32)$, 575(4.04), 639(4.36).

5-pyrenyl-15-[(5-formylthiophene-2-yl)methylene malonic acid]-10,20-Bis[4-(hexyloxy)-3,5dimethoxypheyl]porphyrin zinc(II) (PYR-Por-MA): This compound was synthesized by analogous procedure of the previous compound. The only difference is that here malonic acid was taken instead of cyanacrylic acid. Elemental analysis of Anal. Calcd. For $\mathrm{C}_{74} \mathrm{H}_{64} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{SZn} \%$ (1266.77): C, 70.16; H, 4.49; N, 5.61 Found: C, 70.15; H, 5.10; N, 4.51. ESI-MS (m/z): $\mathrm{C}_{74} \mathrm{H}_{64} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{SZn} \%$ (1266.77): [1264] M ${ }^{2+}(60 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 9.67$ (s, 2H), 9.08 (s,
$2 \mathrm{H}), 8.73(\mathrm{~m}, 4 \mathrm{H}), 8.29(\mathrm{~m}, 6 \mathrm{H}), 8.11(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~m}, 7 \mathrm{H}), 4.17(\mathrm{~m}, 4 \mathrm{H}), 3.85(\mathrm{~s}, 12 \mathrm{H}), 1.93$ $(\mathrm{m}, 4 \mathrm{H}), 1.44(\mathrm{~m}, 12 \mathrm{H}), 0.97(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{UV}-\operatorname{Vis}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\mathrm{nm})\left(\log \varepsilon \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right): 468$ (5.12), 580 (4.01), 654 (4.46).

5-fluorenyl-15-[(5-formylthiophene-2-yl)-2-cyanoacrylicacid]-10,20-Bis[4-(hexyloxy)-3,5dimethoxypheyl]porphyrin zinc(II) (FLU-Por-CA): This compound was synthesized by adopting a similar procedure that was used to prepare 11a. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=0.65$ $(\mathrm{m}, 8 \mathrm{H}), 0.82(\mathrm{~m}, 12 \mathrm{H}), 1.23(\mathrm{~m}, 18 \mathrm{H}), 1.63(\mathrm{~m}, 4 \mathrm{H}), 2.02(\mathrm{~m}, 8 \mathrm{H}), 3.61(\mathrm{~s}, 12 \mathrm{H}), 4.23(\mathrm{~m}, 4 \mathrm{H})$, $6.85(\mathrm{~d}, 2 \mathrm{H}), 7.42(\mathrm{~m}, 8 \mathrm{H}), 7.92-8.05(\mathrm{~m}, 4 \mathrm{H}), 9.03(\mathrm{~m}, 4 \mathrm{H}), 9.61(\mathrm{~m}, 4 \mathrm{H})$. MALDI-TOF MS: m / z $\mathrm{C}_{83} \mathrm{H}_{87} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{SZn}$: calculated: 1380.08 , found: $1381\left[(\mathrm{M}+\mathrm{H})^{+}\right]$. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\mathrm{nm})(\log \varepsilon)$: 267(4.6), 308(4.5), 444(5.2), 575(4.2), 638(4.5).

5-fluorenyl-15-[(5-formylthiophene-2-yl)methylene malonic acid]-10,20-Bis[4-(hexyloxy)-3,5dimethoxypheyl]porphyrin zinc(II) (FLU-Por-MA): This compound was synthesized by adopting a similar procedure that was used to prepare 12a. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=0.87$ $(\mathrm{m}, 12 \mathrm{H}), 0.99(\mathrm{~m}, 8 \mathrm{H}), 1.22(\mathrm{~m}, 17 \mathrm{H}), 1.63(\mathrm{~m}, 4 \mathrm{H}), 1.98(\mathrm{~m}, 8 \mathrm{H}), 3.92(\mathrm{~s}, 12 \mathrm{H}), 4.23(\mathrm{~m}, 4 \mathrm{H})$, $7.03(\mathrm{~d}, 2 \mathrm{H}), 7.36(\mathrm{~m}, 8 \mathrm{H}), 7.92-8.05(\mathrm{~m}, 4 \mathrm{H}), 8.85(\mathrm{~m}, 4 \mathrm{H}), 9.02(\mathrm{~d}, 2 \mathrm{H}), 9.62(\mathrm{~s}, 2 \mathrm{H})$. MALDITOF MS: $m / z \mathrm{C}_{83} \mathrm{H}_{88} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{SZn}$: calculated: 1399.08, found: $1400\left[(\mathrm{M}+\mathrm{H})^{+}\right]$. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $\lambda_{\max }(\mathrm{nm})(\log \varepsilon): 266$ (4.6), 309(4.6), 448 (5.3), 572 (4.2), 632 (4.4).

Emission Spectra of Sensitizers in Dichloromethane

Cyclic voltammogram of PYR-Por-CA in $\mathbf{C H}_{2} \mathbf{C l}_{2}$ solvent, scan rate $100 \mathrm{mV} / \mathrm{s}$.

Fluorescence decay ($\left.\lambda_{\mathrm{ex}}=440 \mathrm{~nm}, \lambda_{\mathrm{em}}=650 \mathrm{~nm}\right)$ in Dichloromethane

Fluorescence decay $\left(\lambda_{\mathrm{ex}}=440 \mathrm{~nm}, \lambda_{\mathrm{em}}=650 \mathrm{~nm}\right)$ in Dichloromethane

Electronic distribution computed in dichloromethane for the first occupied/unoccupied molecular orbitals of the PYR-Por-MA

Table TD-DFT calculated visible absorption wavelengths for PYR-Por-MA, indicating the molecular orbitals involved and their relative contribution to the absorption.

Main Visible Absorbance / nm	Main Charge Transitions		Oscillator Strength	Relative Contribution
	MO from	MO to		
660	HOMO-1	LUMO+1	1.2618	17
	HOMO	LUMO		83
510	HOMO-1	LUMO+1	0.2452	36
	HOMO	LUMO		11
	HOMO	LUMO+2		53
504	HOMO-2	LUMO	0.2403	9
	HOMO-1	LUMO		23
	HOMO-1	LUMO+2		28
	HOMO	LUMO+1		40
444	HOMO-7	LUMO	0.7911	34
	HOMO-2	LUMO+1		16
	HOMO-1	LUMO+1		28
	HOMO	LUMO+2		22
419	HOMO-7	LUMO+1	0.9655	9
	HOMO-6	LUMO		7
	HOMO-4	LUMO+1		11
	HOMO-2	LUMO+2		17
	HOMO-1	LUMO		6
	HOMO-1	LUMO+2		30
	HOMO	LUMO+1		20

Table Percentage contributions from component parts of PYR-Por-MA to selected molecular orbitals. Also quoted are the calculated energies for these molecular orbitals.(Ar-based $=$ trimethoxyaryl unit; S-based = thiophene-bisacetic acid unit)

MO	MO energy /eV	\% Contribution from				
		Zn-based	Porphyrin- based	Pyrene- based	S-based	Ar-based
HOMO-2	-5.51	0.01	13.18	85.61	0.12	1.08
HOMO-1	-5.45	0	82.37	10.40	0	7.23
HOMO	-5.19	0.85	61.82	3.06	23.88	10.39
LUMO	-3.04	0.15	33.89	1.95	62.28	1.73
LUMO+1	-2.42	0.23	88.47	1.46	0	9.84
LUMO+2	-2.33	0.14	51.78	3.11	42.71	2.26

The red dash curve is the calculated spectrum of Py_MA in DCM and the solid columns are the calculated electronic transitions.

Oxidative OTTLE studies of PYR-Por-MA in $0.3 \mathrm{M} \mathrm{TBABF}_{4} / \mathrm{DCM}$ with an applied potential of $+1 \mathrm{~V}($ vs. $\mathrm{Ag} / \mathrm{AgCl})$.

Overlay of initial and final spectra to show regeneration of PYR-Por-MA did not occur. The studies were carried out at $-2{ }^{\circ} \mathrm{C}$. The regeneration process was carried out at +0.2 V .

Electronic distribution computed in dichloromethane for the first occupied/unoccupied molecular orbitals of FLU-Por-CA

HOMO

HOMO-1

HOMO-2

LUMO

LUMO+1

LUMO+2

Table TD-DFT calculated visible absorption wavelengths for Flu-Por-CA indicating the molecular orbitals involved and their relative contribution to the absorption.

Main Visible Absorbance / nm	Main Charge Transitions		Oscillator Strength	Relative Contribution
	MO from	MO to		
669	HOMO-1	LUMO+1	1.3051	16
	HOMO	LUMO		84
513	HOMO-1	LUMO+1	0.1754	36
	HOMO	LUMO		10
	HOMO	LUMO+2		54
508	HOMO-1	LUMO	0.2007	25
	HOMO-1	LUMO+2		31
	HOMO	LUMO+1		44
446	HOMO-7	LUMO	0.8759	41
	HOMO-1	LUMO+1		35
	HOMO	LUMO+2		24
418	HOMO-7	LUMO+1	1.0313	9
	HOMO-6	LUMO		9
	HOMO-4	LUMO+1		14
	HOMO-1	LUMO		7
	HOMO-1	LUMO+2		38
	HOMO	LUMO+1		23

Table Percentage contributions from component parts of Flu-Por-CAto selected molecular orbitals. Also quoted are the calculated energies for these molecular orbitals. $($ Ar-based $=$ trimethoxyaryl unit; S-based = thiophene-cyanoacetic acid unit)

MO	MO energy /eV	\% Contribution from				
		Porphyrin- based	Fluorene- based	S- based	Ar-based	
HOMO-1		0.01	5.66	88.26	1.29	4.78
HOMO		0.87	62.41	3.92	23.31	9.49
LUMO		0.16	31.66	1.77	64.90	1.51
LUMO+1		0.23	88.11	2.08	0	9.58
LUMO+2	-2.36	0.14	54.15	3.14	40.49	2.08

The red dash curve is the calculated spectrum of Flu-Por-CA in DCM and the solid columns are the calculated electronic transitions.

Oxidative OTTLE studies of Flu-Por-CA in $0.3 \mathrm{M} \mathrm{TBABF}_{4} / \mathrm{DCM}^{\text {Tith }}$ an applied potential of +1 V (vs. $\mathrm{Ag} / \mathrm{AgCl})$.

Overlay of initial and final spectra to show regeneration of Flu-Por-CA did not occur. The studies were carried out at $-40^{\circ} \mathrm{C}$. The regeneration process was carried out at +0.15 V .

Electronic distribution computed in dichloromethane for the first occupied/unoccupied molecular orbitals of FLU-Por-MA

HOMO

HOMO-1

HOMO-2

LUMO

LUMO+1

LUMO+2

Table 1 TD-DFT calculated visible absorption wavelengths for FLU-Por-MA, indicating the molecular orbitals involved and their relative contribution to the absorption.

Main Visible Absorbance / nm	Main Charge Transitions		Oscillator Strength	Relative Contribution
	MO from	MO to		
674	HOMO-1	LUMO+1	1.2827	16
	HOMO	LUMO		84
515	HOMO-1	LUMO+1	0.1501	36
	HOMO	LUMO		10
	HOMO	LUMO+2		54
510	HOMO-1	LUMO	0.1990	24
	HOMO-1	LUMO+2		32
	HOMO	LUMO+1		44
445	HOMO-7	LUMO	0.8681	41
	HOMO-1	LUMO+1		36
	HOMO	LUMO+2		23
419	HOMO-7	LUMO+1	1.0557	9
	HOMO-6	LUMO		9
	HOMO-4	LUMO+1		16
	HOMO-1	LUMO+2		41
	HOMO	LUMO+1		25

Table Percentage contributions from component parts of FLU-Por-MA to selected molecular orbitals. Also quoted are the calculated energies for these molecular orbitals. (Ar-based = trimethoxyaryl unit; S-based = thiophene-bisacetic acid unit)

MO	MO energy /eV	\% Contribution from				
		Zn-based	Porphyrin- based	Fluorene- based	S- based	Ar- based
HOMO-2		0.01	5.71	88.55	0.89	4.84
HOMO-1		0	89.19	2.81	0	8.00
HOMO		0.86	62.25	3.99	22.69	10.21
LUMO		0.16	30.97	1.76	65.54	1.57
LUMO+1	-2.43	0.23	87.90	2.19	0	9.68
LUMO+2	-2.37	0.14	54.70	3.23	39.66	2.27

The red dash curve is the calculated spectrum of FLU-Por-MA in DCM and the solid columns are the calculated electronic transitions.

Oxidative OTTLE studies of Flu_MA in $0.3 \mathrm{M} \mathrm{TBABF}_{4} / \mathrm{DCM}^{\text {with }}$ an applied potential of +1 V (vs. $\mathrm{Ag} / \mathrm{AgCl})$.

Overlay of initial and final spectra to show regeneration of Flu_MA did not occur. The studies were carried out at $-2{ }^{\circ} \mathrm{C}$. The regeneration process was carried out at +0.2 V .

TG/DTG curves of PYR-Por-MA with heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$ under Nitrogen atmosphere.

