Ethynyl Thiophene Appended Unsymmetrical Zinc Porphyrin Sensitizers for Dye-Sensitized Solar Cells: Synthesis, Spectral, Electrochemical, and Photovoltaic Properties

P. Silviya Reeta,^{*a*} L. Giribabu,^{*a**} S.Senthilarasu,^{*b*} Min-Hung Hsu,^{*b*} D. Kishore Kumar,^{*b*} Hari M. Upadhyaya,^{*b**} Neil Robertson^{*c**} and Tracy Hewat^{*c*}

^{*a*} Inorganic & Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007 (A.P.), India.

^bEnergy Conversion Laboratory (ECL), Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS.

^c School of Chemistry and EaStCHEM, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH93JJ, UK.

*Author for correspondence E-mail: <u>giribabu@iict.res.in</u>, **Phone:** +91-40-27193186, fax: +91-40-27160921

Synthetic Scheme of PYR-Por-CA and PYR-Por-MA

(i) DMF, K₂CO₃, reflux 4h (iia) Dipyrromethane, CH₂Cl₂, TFA, RT (iib) DDQ, TEA, RT (iii) NBS, CH₂Cl₂, RT (iva,b) Pd(PPh₃)₄, Cs(CO)₃, Toluene, reflux, 12h (va) NBS, CH₂Cl₂, RT (vb) Zn(OAc)₂, CHCl₃/CH₃OH, reflux, 2h (vi) TMSA, TEA, Pd(PPh₃)₂Cl₂, CuI, 50 °C, 8h (vii) K₂CO₃, CH₃OH/CH₂Cl₂, RT, 3h (viii) 5-bromothiophene-2-carboxaldehyde, TEA, Pd(PPh₃)₂Cl₂, CuI, 50 °C, 8h (ix) Cyanoacetic acid (**PYR-Por-CA**) or malonic acid (**PYR-Por-MA**), CHCl₃/CH₃CN (3:1), piperidine, reflux, 8h.

(i) DMF, K₂CO₃, reflux 4h (iia) Dipyrromethane, CH₂Cl₂, TFA, RT (iib) DDQ, TEA, RT (iii) NBS, CH₂Cl₂, RT (iva,b) Pd(PPh₃)₄, Cs(CO)₃, Toluene, reflux, 12h (va) NBS, CH₂Cl₂, RT (vb) Zn(OAc)₂, CHCl₃/CH₃OH, reflux, 2h (vi) TMSA, TEA, Pd(PPh₃)₂Cl₂, CuI, 50 °C, 8h (vii) K₂CO₃, CH₃OH/CH₂Cl₂, RT, 3h (viii) 5-bromothiophene-2-carboxaldehyde, TEA, Pd(PPh₃)₂Cl₂, CuI, 50 °C, 8h (ix) Cyanoacetic acid (FLU-Por-CA) or malonic acid (FLU-Por-MA), CHCl₃/CH₃CN (3:1), piperidine, reflux, 8h.

Detailed Synthetic Procedure:

4-(hexyloxy)-3,5-dimethoxybenzaldehyde (2)

3,5-dimethoxy-4-hydroxy-benzaldehyde (5g, 0.0275 mole), 1-hexylbromide (7.7 ml, 0.055 mole) and K₂CO₃ were added to 10 ml of dried, dry DMF under nitrogen atmosphere. The reaction mixture was heated to reflux for 4h. After cooling to room temperature, the solution was extracted with ice cold water and ether. The organic phase was collected and evaporated to dryness. The brown liquid was purified by silica gel column using hexane/CHCl₃ (2:1 v/v) mixture as eluent to yield pale yellow oil (92%). Elemental analysis of Anal. Calcd. For $C_{15}H_{22}O_4$ % (266.33): C, 67.64; H, 8.33. Found: C, 67.60; H, 8.30. ESI-MS (m/z): $C_{15}H_{22}O_4$ [266.33]: M⁺ 266 (100%). ¹H NMR (CDCl₃, δ ppm): 9.87 (s, 1H), 7.05 (s, 2H), 3.94 (m, 2H), 3.73 (s, 6H), 1.75 (m, 2H), 1.29 (m, 6H), 0.96 (m, 3H).

5,15-Bis[4-(hexyloxy)-3,5-dimethoxypheyl]porphyrin (3)

Lindsey method was adopted for the synthesis of this porphyrin. This route involves the condensation of dipyrromethane and the substituted benzaldehyde in dry CH₂Cl₂. The reaction mixture was degassed for 15min by purging with nitrogen, followed by drop wise addition of trifluoro acetic acid (TFA). The reaction mixture was protected from ambient light and allowed to stir at RT for 3h under nitrogen atmosphere. DDQ was added and the reaction mixture was allowed to stir for further 1h followed by quenching the acid catalyst using triethyl acetate (TEA). The product was purified by silica gel column chromatography using CH₂Cl₂ as the eluant to yield purple powder(15% yield). Elemental analysis of Anal. Calcd. For C₄₈H₅₄N₄O₆% (782.96): C, 73.63; H, 6.95; N, 7.16. Found: C, 73.60; H, 6.97; N, 7.20. ESI-MS (m/z): C₄₈H₅₄N₄O₆ [782.96]: M⁺ 784 (100%). ¹H NMR (CDCl₃, δ ppm): 10.35 (s, 2H), 9.05 (dd, 8H), 7.51 (s, 4H), 4.15 (m, 4H), 3.95 (s, 12H), 2.00 (m, 4H), 1.55 (m, 12H), 0.96 (m, 6H), -3.05 (b, 2H). UV-Vis (CH₂Cl₂) λ_{max} (nm) (log ε M⁻¹ cm⁻¹) : 410(5.81), 504(4.20), 539(3.8), 577(3.74), 632(3.21).

5-bromo-10,20- Bis[4-(hexyloxy)-3,5-dimethoxypheyl]porphyrin (4)

Porphyrin (3) (100mg, 0.13mmol) was dissolved in 80ml of CH_2Cl_2 and the solution was cooled to 0° C. To this N-bromosuccinamide (28mg, 0.16mmol in 8 ml of CH_2Cl_2), was added drop

wise. The reaction was allowed to stir for 12 min, washed with water and purified by silica gel column chromatography using CHCl₃/Hexane (3:1 v/v) as the eluent. The second band was the desired product (50% yield). Elemental analysis of Anal. Calcd. For C₄₈H₅₃BrN₄O₆% (861.86): C, 66.89; H, 6.20; N, 6.50. Found: C, 66.90; H, 6.30; N, 7.50. ESI-MS (m/z): C₄₈H₅₃BrN₄O₆ [861.86]: M⁺-Br 784 (100%). ¹H NMR (CDCl₃, δppm): 10.35 (s, 1H), 9.82 (d, 2H), 9.15 (d, 2H), 9.00 (dd, 4H), 7.45 (s, 4H), 4.20 (m, 4H), 3.95 (s, 12H), 2.00 (m, 4H), 1.55 (m, 12H), 0.97 (m, 6H), -3.00 (b, 2H). UV-Vis (CH₂Cl₂) λ_{max} (nm) (log ε M⁻¹ cm⁻¹) : 419(5.75), 514(3.30), 549(3.75), 589(3.71), 646(4.20).

5-pyrenyl-10,20- Bis[4-(hexyloxy)-3,5-dimethoxypheyl]porphyrin (5a)

Monobromo porphyrin (4) (190 mg, 0.24 mmol) was dissolved in 40 ml of dry Toluene, to which CsCO₃ (393.6 mg, 1.2 mmol), Pd(PPh₃)₄ (0.25 equivalents) and 1-pyrenylborane (218 mg, 0.713 mmol) were added and the reaction mixture was refluxed under nitrogen atmosphere for 12 h. After cooling to RT, the crude mixture was purified using silica gel column with EtOAc/Hex (1:4 v/v) to afford the desired product (90% yield). Elemental analysis of Anal. Calcd. For C₆₄H₆₂N₄O₆% (983.20): C, 78.18; H, 6.36; N, 5.70. Found: C, 78.20; H, 6.33; N, 5.68. ESI-MS (m/z): C₆₄H₆₂N₄O₆ [983.20]: M 984 (100%). ¹H NMR (CDCl₃, δ ppm): 10.25 (s, 1H), 9.37 (d, 2H), 9.14 (d, 2H), 8.90 (dd, 2H), 8.70 (s, 1H), 8.46 (m, 6H), 8.05 (m, 2H), 7.45 (m, 6H), 4.28 (m, 4H), 3.95 (s, 12H), 1.99 (m, 4H), 1.55 (m, 12H), 0.97 (m, 6H), -2.78 (b, 2H). UV-Vis (CH₂Cl₂) λ_{max} (nm) (log ϵ M⁻¹ cm⁻¹): 419 (5.81), 511 (4.44), 547(3.85), 584 (3.81), 640 (3.33).

5-fluorenyl-10,20- Bis[4-(hexyloxy)-3,5-dimethoxypheyl]porphyrin (5b)

This compound was synthesized by adopting a similar procedure that was used to prepare **5a**. ¹H NMR(CDCl₃, 300MHz): $\delta = 2.95$ (s, 2H), 0.78 (m,12H), 0.98 (m, 8H), 1.25 (m, 8H), 1.45 (m, 10H), 1.60 (m, 4H), 2.1 (m, 8H), 3.95 (s, 12H), 4.31(t, 4H), 7.50 (m, 7H), 7.91-8.29 (m, 4H), 8.94(d, 4H), 9.13(d, 2H), 9.35 (s, 2H), 10.21 (s, 1H). ESI-MS: *m/z* C₇₃H₈₆N₄O₆: calculated : 1115.49, found : 1115 [M⁺]. UV-Vis (CH₂Cl₂) λ_{max} (nm) (log ε): 272 (1.5), 306 (4.4), 418 (5.9), 512 (4.3), 547 (3.9), 587 (3.8), 641(3.5).

5-pyrenyl-15-bromo-10,20- Bis[4-(hexyloxy)-3,5-dimethoxypheyl]porphyrin (6a)

Pyrenyl porphyrin (**5a**) (65mg, 0.065mmol) was dissolved in 30 ml of CH₂Cl₂ and the solution was cooled to 0° C. To this N-bromosuccinamide (14.3mg,0.078 mmol dissolved in 3 ml of CH₂Cl₂), was added drop wise. The reaction was allowed to stir for 12 min, washed with water and purified by silica gel column chromatography using CHCl₃/Hexane (3:1 v/v) as the eluent to get the desired product in 80% yield. Elemental analysis of Anal. Calcd. For C₆₄H₆₁BrN₄O₆% (1060.37): C, 72.37; H, 5.79; N, 5.28. Found: C, 72.35; H, 5.80; N, 5.30. ESI-MS (m/z): C₆₄H₆₁BrN₄O₆ [1060.37]: M³⁺ 1057 (50%), [C₆₄H₆₁BrN₄O₆-Br] 984 (100%). ¹H NMR (CDCl₃, δ ppm): 9.71 (d, 2H), 9.14 (d, 2H), 8.90 (dd, 2H), 8.70 (s, 1H), 8.46 (m, 6H), 8.05 (m, 2H), 7.45 (m, 6H), 4.27 (m, 4H), 3.89 (s, 12H), 1.99 (m, 4H), 1.55 (m, 12H), 0.97 (m, 6H), -2.55 (b, 2H). UV-Vis (CH₂Cl₂) λ_{max} (nm) (log ε M⁻¹ cm⁻¹) : 427(5.90), 521(4.21), 557(3.80), 597(3.67), 654(3.50).

5-fluorenyl-15-bromo-10,20- Bis[4-(hexyloxy)-3,5-dimethoxypheyl]porphyrin (6b)

This compound was synthesized by adopting a similar procedure that was used to prepare **6a** ¹H NMR(CDCl₃, 300MHz): $\delta = 0.81$ (m,12H), 0.99 (m, 8H), 1.22 (m, 8H), 1.42 (m, 10H), 1.62 (m, 4H), 2.04 (m, 8H), 3.99 (s, 12H), 4.29 (m, 4H), 7.24 (m, 7H), 7.98 -8.27 (m, 4H), 8.99 (d, 4H), 9.05 (d, 2H), 9.29 (s, 2H). ESI-MS: *m/z* C₇₃H₈₅BrN₄O₆ : calculated : 1194.38, found : 1195[(M+H)⁺]. UV-Vis(CH₂Cl₂) λ_{max} (nm)(log ϵ) : 268 (1.5), 307(4.4), 425(5.9), 521(4.3), 557(4.1), 599(3.7), 655(3.7).

5-pyrenyl-15-bromo-10,20- Bis[4-(hexyloxy)-3,5-dimethoxypheyl]porphyrin zinc(II) (7a)

Porphyrin (**6a**) (50mg, 0.051 mmol) and $Zn(OAc)_2$ (0.51 mmol) were dissolved in CHCl₃/MeOH (4:1 v/v) mixture and heated to reflux until Q-band absorption has changed. Then the reaction mixture cooled to RT, washed with water and recrystallised from CHCl₃/MeOH mixture to yield 95% of **7**. Elemental analysis of Anal. Calcd. For C₆₄H₅₉BrN₄O₆Zn% (1125.47): C, 68.30; H, 5.28; N, 4.98. Found: C, 68.32; H, 5.30; N, 5.00. ESI-MS (m/z): C₆₄H₅₉BrN₄O₆Zn [1125.47]: M 1126 (50%). ¹H NMR (CDCl₃, δ ppm): 9.77 (d, 2H), 9.10 (d, 2H), 8.81 (dd, 2H), 8.70 (s, 1H), 8.46 (m, 6H), 8.05 (m, 2H), 7.45 (m, 6H), 4.18 (m, 4H), 3.87 (s, 12H), 1.99 (m, 4H), 1.55 (m, 12H), 0.97 (m, 6H). UV-Vis (CH₂Cl₂) λ_{max} (nm) (log ϵ M⁻¹ cm⁻¹) 428(5.91), 554(4.22), 593(3.61).

5-fluorenyl-15-bromo-10,20- Bis[4-(hexyloxy)-3,5-dimethoxypheyl]porphyrin zinc(II) (7b)

This compound was synthesized by adopting a similar procedure that was used to prepare **7a.** ¹H NMR(CDCl₃, 300MHz): $\delta = 0.88$ (m,12H), 0.99(m, 8H), 1.30(m,8H), 1.45(m, 10H), 1.64 (m, 4H), 1.95 (m, 4H), 2.08 (m, 4H), 3.95(s, 12H), 4.26(t, 4H), 7.44(m, 7H), 7.92-8.20 (m, 4H), 8.97 (d, 4H), 9.10(d, 2H), 9.80 (s, 2H), 10.21(s, 1H) . ESI-MS: m/z C₇₃H₈₃BrN₄O₆ : calculated : 1257.789, found : 1258 [(M+H)⁺]. UV-Vis(CH₂Cl₂) λ_{max} (nm)(log ϵ) : 263(4.4), 307(4.3), 426(5.9), 553(4.3), 594(4.4).

5-pyrenyl-15-trimethylsilylethynyl-10,20-Bis[4-(hexyloxy)-3,5-dimethoxypheyl]porphyrin zinc(II) (8a)

Porphyrin (**7a**) (64 mg, 0.056 mmol) and Pd(PPh₃)₂Cl₂ (6.91mg, 0.006mmol) were dissolved in 10 ml of dry triethyl amine (TEA) to which trimethylsilylacetylene (0.036ml, 0.28mmol) and CuI (1.14 mg, 0.006 mmol) were added and the solution was heated to 50 °C for 8h. After cooling to RT, the crude mixture was washed with water and extracted with CHCl₃. The green product was subjected to silica gel column with CHCl₃/Hexane (3:1 v/v) as the eluent to afford the desired product (85% yield). Elemental analysis of Anal. Calcd. For C₆₉H₆₈N₄O₆SiZn% (1142.77): C, 72.52; H, 6.00; N, 4.90. Found: C, 72.55; H, 5.98; N, 4.91. ESI-MS (m/z): C₆₉H₆₈N₄O₆SiZn [1142.77]: M⁺ (35%). ¹H NMR (CDCl₃, δ ppm): 9.73 (d, 2H), 9.03 (d, 2H), 8.90 (dd, 2H), 8.70 (s, 1H), 8.46 (m, 6H), 8.05 (m, 2H), 7.45 (m, 6H), 4.18 (m, 4H), 3.96 (s, 12H), 1.93 (m, 4H), 1.44 (m, 12H), 0.97 (m, 6H), 0.63 (s, 9H). UV-Vis (CH₂Cl₂) λ_{max} (nm) (log ϵ M⁻¹ cm⁻¹) : 434(5.83), 561(4.22), 603(3.91).

5-fluorenyl-15-trimethylsilylethynyl-10,20-Bis[4-(hexyloxy)-3,5-dimethoxypheyl] porphyrin zinc(II) (**8b**)

This compound was synthesized by adopting a similar procedure that was used to prepare **8a.** ¹H NMR(CDCl₃, 300MHz): $\delta = 0.64$ (s, 9H), 0.87 (m,12H), 0.98(m, 8H), 1.16 (m,8H), 1.45(m, 10H), 1.46 (m, 4H), 1.99 (m, 4H), 2.11(m, 4H), 3.95(s, 12H), 4.26(t, 4H), 7.44(m, 7H), 7.92-8.20 (m, 4H), 8.97 (d, 4H), 9.10(d, 2H), 9.80 (s, 2H), 10.21(s, 1H) . ESI-MS: *m/z*

 $C_{78}H_{92}N_4O_6SiZn$: calculated : 1275.08, found : 1275 [M⁺]. UV-Vis(CH₂Cl₂) $\lambda_{max}(nm)(log\epsilon)$: 265(4.3), 307(4.3), 434(5.6), 563(4.2), 605(4.0).

5-pyrenyl-15-ethynyl-10,20-Bis[4-(hexyloxy)-3,5-dimethoxypheyl]porphyrin zinc(II) (9a)

Porphyrin (**8a**) (65mg, 0.057mmol) and K₂CO₃ (0.5g) were dissolved in 30 ml of CH₂Cl₂/MeOH mixture and allowed to stir at RT fo 5h. The crude mixture was filtered to remove K₂CO₃, washed with water and extracted with CHCl₃. Purification by silica gel column using CHCl₃/Hexane (4:1 v/v) afforded a more polar green product (90% yield). Elemental analysis of Anal. Calcd. For C₆₆H₆₀N₄O₆Zn% (1070.59): C, 74.04; H, 5.65; N, 5.23. Found: C, 74.00; H, 5.68; N, 5.20. ESI-MS (m/z): C₆₆H₆₀N₄O₆Zn [1070.59]: M+Na (100). ¹H NMR (CDCl₃, δ ppm): 9.82 (d, 2H), 9.12 (d, 2H), 8.80 (dd, 2H), 8.70 (s, 1H), 8.46 (m, 6H), 8.05 (m, 2H), 7.45 (m, 6H), 4.23 (m, 4H), 3.91 (s, 12H), 1.93 (m, 4H), 1.44 (m, 12H), 0.97 (m, 6H). UV-Vis (CH₂Cl₂) λ_{max} (nm) (log ϵ M⁻¹ cm⁻¹) : 431(5.85), 557(4.54), 599(4.13).

5-fluorenyl-15-ethynyl-10,20-Bis[4-(hexyloxy)-3,5-dimethoxypheyl]porphyrin zinc(II) (9b)

This compound was synthesized by adopting a similar procedure that was used to prepare **9a.** ¹H NMR(CDCl₃, 300MHz): $\delta = 0.86$ (m,12H), 0.99(m, 8H), 1.44(m,8H), 1.55(m, 10H), 1.65 (m, 4H), 1.99 (m, 4H), 2.11 (m, 4H), 3.67 (s, 1H), 3.93(s, 12H), 4.33(t, 4H), 7.46(m, 7H), 7.90-8.25 (m, 4H), 8.98 (d, 4H), 9.12(d, 2H), 9.45 (s, 2H), ESI-MS: *m/z* C₇₅H₈₄N₄O₆ Zn: calculated : 1202.90 , found : 1204 [(M+2H)⁺]. UV-Vis(CH₂Cl₂) $\lambda_{max}(nm)(log\epsilon)$: 267(4.5), 308(4.4), 430(5.7), 557(4.3), 600(5.0).

5-pyrenyl-15-(5-formylthiophene-2-yl)-10,20-Bis[4-(hexyloxy)-3,5-dimethoxypheyl]porphyrin zinc(II) (10a)

Porphyrin **9a** (50 mg, 0.047 mmol) and Pd(PPh₃)₂Cl₂ (5,75 mg ,0.005 mmol) were dissolved in 10 ml of dry TEA to which 5-bromothiophene-2-carboxaldehyde (44.16 mg, 0.025 ml, 0.23 mmol) and CuI (0.95 mg, 0.005 mmol) were added and the solution was heated to 50 °C for 8h. After cooling to RT, the crude mixture was washed with water and extracted with CHCl₃. The green product was purified using silica gel column with CHCl₃/Hexane (3:1 v/v) as the eluant to afford the desired product (85% yield). Elemental analysis of Anal. Calcd. For $C_{71}H_{62}N_4O_7SZn\%$ (1180.72): C, 72.22; H, 5.29; N, 4.75. Found: C, 72.20; H, 5.30; N, 4.70. ESI-MS (m/z): C₇₁H₆₂N₄O₇SZn [1180.59]: M (100%). ¹H NMR (CDCl₃, δppm): 10.11 (s, 1H), 9.90 (d, 1H), 9.77 (s, 1H), 9.20 (d, 2H), 8.77 (m, 3H), 8.50 (m, 6H), 8.21 (m, 2H), 7.83 (m, 4H), 7.45 (m, 7H), 6.90 (s, 1H), 4.22 (m, 4H), 3.93 (s, 12H), 1.93 (m, 4H), 1.44 (m, 12H), 0.97 (m, 6H). UV-Vis (CH₂Cl₂) λ_{max} (nm) (log ε M⁻¹ cm⁻¹) : 426(5.83), 454(4.83), 566(3.82), 623(4.00).

5-fluorenyl-15-(5-formylthiophene-2-yl)-10,20-Bis[4-(hexyloxy)-3,5-dimethoxypheyl]porphyrin zinc(II) (10b)

This compound was synthesized by adopting a similar procedure that was used to prepare **10a.** ¹H NMR(CDCl₃, 300MHz): $\delta = 0.87$ (m,12H), 0.99(m, 8H), 1.43 (m,8H), 1.56(m, 10H), 1.63 (m, 4H), 2.00 (m, 4H), 2.12 (m, 4H), 3.92(s, 12H), 4.28 (t, 4H), 7.15 (d, 1H), 7.35 (d, 1H), 7.44(m, 7H), 7.92-8.23 (m, 4H), 9.03 (m, 4H), 9.48 (d, 2H), 9.54(s, 2H), 9.64 (s, 1H). ESI-MS: *m/z* C₈₀H₈₆N₄O₇SZn : calculated : 1313.04, found : 1315 [(M+H)⁺]. UV-Vis (CH₂Cl₂) λ_{max} (nm)(loge) : 267(4.5), 308(4.5), 423(5.6),453(sh, 5.1), 551(4.2), 621(4.0).

5-pyrenyl-15-[(5-formylthiophene-2-yl)-2-cyanoacrylicacid]-10,20-Bis[4-(hexyloxy)-3,5-

dimethoxypheyl]porphyrin zinc(II) **PYR-Por-CA:** Porphyrin **10a** (50 mg, 0.042 mmol) was dissolved in 30 ml of CH₃CN/ CHCl₃ (3:1), to which piperidine and cyanoacetic acid (0.21 mmol) were added. The reaction mixture was refluxed for 8h. After cooling to RT, the reaction mixture was washed with water and 0.1M HCl and extracted with CH₂Cl₂. The product was purified with silica gel column using CH₂Cl₂/MeOH (3:1 v/v) as the eluant to afford the desired product (85% yield). Elemental analysis of Anal. Calcd. For C₇₄H₆₃N₅O₈SZn% (1247.77): C, 71.23; H, 5.09; N, 5.61 Found: C, 71.25; H, 5.10; N, 5.65. ESI-MS (m/z): C₇₄H₆₃N₅O₈SZn [1246]: M⁺ (100%). ¹H NMR (CDCl₃, δ ppm): 9.67 (s, 2H), 9.08 (s, 2H), 8.73 (m, 4H), 8.29 (m, 6H), 8.11 (m, 2H), 7.36 (m, 8H), 4.17 (m, 4H), 3.85 (s, 12H), 1.93 (m, 4H), 1.44 (m, 12H), 0.97 (m, 6H). UV-Vis (CH₂Cl₂) λ max (nm) (log ϵ M⁻¹ cm⁻¹) : 447(5.32), 575(4.04), 639(4.36).

5-pyrenyl-15-[(5-formylthiophene-2-yl)methylene malonic acid]-10,20-Bis[4-(hexyloxy)-3,5dimethoxypheyl]porphyrin zinc(II) (**PYR-Por-MA**): This compound was synthesized by analogous procedure of the previous compound. The only difference is that here malonic acid was taken instead of cyanacrylic acid. Elemental analysis of Anal. Calcd. For C₇₄H₆₄N₄O₁₀SZn% (1266.77): C, 70.16; H, 4.49; N, 5.61 Found: C, 70.15; H, 5.10; N, 4.51. ESI-MS (m/z): C₇₄H₆₄N₄O₁₀SZn% (1266.77): [1264] M²⁺ (60%). ¹H NMR (CDCl₃, δ ppm): 9.67 (s, 2H), 9.08 (s, 2H), 8.73 (m, 4H), 8.29 (m, 6H), 8.11 (m, 2H), 7.36 (m, 7H), 4.17 (m, 4H), 3.85 (s, 12H), 1.93 (m, 4H), 1.44 (m, 12H), 0.97 (m, 6H). UV-Vis(CH₂Cl₂) λ_{max} (nm) (log ϵ M⁻¹ cm⁻¹) : 468 (5.12), 580 (4.01), 654 (4.46).

5-fluorenyl-15-[(5-formylthiophene-2-yl)-2-cyanoacrylicacid]-10,20-Bis[4-(hexyloxy)-3,5dimethoxypheyl]porphyrin zinc(II) (**FLU-Por-CA**): This compound was synthesized by adopting a similar procedure that was used to prepare **11a.** ¹H NMR(CDCl₃, 300MHz): δ = 0.65 (m,8H), 0.82(m, 12H), 1.23 (m,18H), 1.63 (m, 4H), 2.02 (m, 8H), 3.61(s, 12H), 4.23 (m, 4H), 6.85 (d, 2H), 7.42(m, 8H), 7.92-8.05 (m, 4H), 9.03 (m, 4H), 9.61 (m, 4H). MALDI-TOF MS: *m/z* C₈₃H₈₇N₅O₈SZn: calculated: 1380.08, found: 1381 [(M+H)⁺]. UV-Vis (CH₂Cl₂) λ_{max}(nm)(logε) : 267(4.6), 308(4.5), 444(5.2), 575(4.2), 638(4.5).

5-fluorenyl-15-[(5-formylthiophene-2-yl)methylene malonic acid]-10,20-Bis[4-(hexyloxy)-3,5dimethoxypheyl]porphyrin zinc(II) (FLU-Por-MA): This compound was synthesized by adopting a similar procedure that was used to prepare 12a. ¹H NMR(CDCl₃, 300MHz): $\delta = 0.87$ (m,12H), 0.99(m, 8H), 1.22 (m, 17H), 1.63 (m, 4H), 1.98 (m, 8H), 3.92(s, 12H), 4.23 (m, 4H), 7.03(d, 2H), 7.36 (m, 8H), 7.92-8.05 (m, 4H), 8.85 (m, 4H), 9.02 (d, 2H), 9.62(s, 2H). MALDI-TOF MS: *m/z* C₈₃H₈₈N₄O₁₀SZn: calculated: 1399.08, found: 1400 [(M+H)⁺]. UV-Vis (CH₂Cl₂) λ_{max} (nm)(loge) : 266 (4.6), 309(4.6), 448 (5.3), 572 (4.2), 632 (4.4).

Emission Spectra of Sensitizers in Dichloromethane

Cyclic voltammogram of PYR-Por-CA in CH₂Cl₂ solvent, scan rate 100 mV/s.

Fluorescence decay ($\lambda_{ex} = 440$ nm, $\lambda_{em} = 650$ nm) in Dichloromethane

Fluorescence decay (λ_{ex} = 440 nm, λ_{em} = 650 nm) in Dichloromethane

Electronic distribution computed in dichloromethane for the first occupied/unoccupied molecular orbitals of the PYR-Por-MA

LUMO

LUMO+1

LUMO+2

Main Visible	Main Char	ge Transitions	Oscillator	Relative	
Absorbance / nm	MO from	MO to	Strength	Contribution	
660	HOMO-1	LUMO+1	1.2618	17	
	НОМО	LUMO		83	
510	HOMO-1	LUMO+1	0.2452	36	
	НОМО	LUMO		11	
	НОМО	LUMO+2		53	
504	НОМО-2	LUMO	0.2403	9	
	HOMO-1	LUMO		23	
	HOMO-1	LUMO+2		28	
	НОМО	LUMO+1		40	
444	HOMO-7	LUMO	0.7911	34	
	НОМО-2	LUMO+1		16	
	HOMO-1	LUMO+1		28	
	НОМО	LUMO+2		22	
419	HOMO-7	LUMO+1	0.9655	9	
	HOMO-6	LUMO		7	
	HOMO-4	LUMO+1		11	
	НОМО-2	LUMO+2		17	
	HOMO-1	LUMO		6	
	HOMO-1	LUMO+2		30	
	НОМО	LUMO+1		20	
			1		

Table TD-DFT calculated visible absorption wavelengths for **PYR-Por-MA**, indicating the molecular orbitals involved and their relative contribution to the absorption.

Table Percentage contributions from component parts of **PYR-Por-MA** to selected molecular orbitals. Also quoted are the calculated energies for these molecular orbitals.(Ar-based = trimethoxyaryl unit; S-based = thiophene-bisacetic acid unit)

МО	MO energy	% Contribution from					
	/ ev	Zn-based	Porphyrin- based	Pyrene- based	S-based	Ar-based	
НОМО-2	-5.51	0.01	13.18	85.61	0.12	1.08	
HOMO-1	-5.45	0	82.37	10.40	0	7.23	
НОМО	-5.19	0.85	61.82	3.06	23.88	10.39	
LUMO	-3.04	0.15	33.89	1.95	62.28	1.73	
LUMO+1	-2.42	0.23	88.47	1.46	0	9.84	
LUMO+2	-2.33	0.14	51.78	3.11	42.71	2.26	

The red dash curve is the calculated spectrum of Py_MA in DCM and the solid columns are the calculated electronic transitions.

Oxidative OTTLE studies of **PYR-Por-MA** in 0.3 M TBABF₄/DCM with an applied potential of +1 V (vs. Ag/AgCl).

Overlay of initial and final spectra to show regeneration of **PYR-Por-MA** did not occur. The studies were carried out at -2 °C. The regeneration process was carried out at +0.2 V.

Electronic distribution computed in dichloromethane for the first occupied/unoccupied molecular orbitals of FLU-Por-CA

номо

HOMO-1

HOMO-2

LUMO

LUMO+1

LUMO+2

Main Visible	Main Cha	arge Transitions	Oscillator	Relative	
Absorbance / nm	MO from	MO to	Strength	Contribution	
669	HOMO-1	LUMO+1	1.3051	16	
	НОМО	LUMO		84	
513	HOMO-1	LUMO+1	0.1754	36	
	НОМО	LUMO		10	
	НОМО	LUMO+2		54	
508	HOMO-1	LUMO	0.2007	25	
	HOMO-1	LUMO+2		31	
	НОМО	LUMO+1		44	
446	HOMO-7	LUMO	0.8759	41	
	HOMO-1	LUMO+1		35	
	НОМО	LUMO+2		24	
418	HOMO-7	LUMO+1	1.0313	9	
	HOMO-6	LUMO		9	
	HOMO-4	LUMO+1		14	
	HOMO-1	LUMO		7	
	HOMO-1	LUMO+2		38	
	НОМО	LUMO+1		23	

Table TD-DFT calculated visible absorption wavelengths for Flu-Por-CA indicating the molecular orbitals involved and their relative contribution to the absorption.

Table Percentage contributions from component parts of Flu-Por-CAto selected molecular
orbitals. Also quoted are the calculated energies for these molecular orbitals.(Ar-based =
trimethoxyaryl unit; S-based = thiophene-cyanoacetic acid unit)

ΜΟ	MO energy	% Contribution from					
	7.0.4		Porphyrin-	Fluorene-	S-	Ar-based	
			based	based	based		
НОМО-2	-5.95	0.01	5.66	88.26	1.29	4.78	
HOMO-1	-5.47	0	89.12	3.00	0	7.88	
НОМО	-5.20	0.87	62.41	3.92	23.31	9.49	
LUMO	-3.08	0.16	31.66	1.77	64.90	1.51	
LUMO+1	-2.43	0.23	88.11	2.08	0	9.58	
LUMO+2	-2.36	0.14	54.15	3.14	40.49	2.08	

The red dash curve is the calculated spectrum of Flu-Por-CA in DCM and the solid columns are the calculated electronic transitions.

Oxidative OTTLE studies of **Flu-Por-CA** in 0.3 M TBABF₄/DCM with an applied potential of +1 V (vs. Ag/AgCl).

Overlay of initial and final spectra to show regeneration of **Flu-Por-CA** did not occur. The studies were carried out at -40 °C.The regeneration process was carried out at +0.15 V.

номо

HOMO-1

HOMO-2

LUMO

LUMO+1

LUMO+2

Main Visible	Main Cha	rge Transitions	Oscillator	Relative	
Absorbance / nm	MO from	MO to	Strength	Contribution	
674	HOMO-1	LUMO+1	1.2827	16	
	НОМО	LUMO		84	
515	HOMO-1	LUMO+1	0.1501	36	
	НОМО	LUMO		10	
	НОМО	LUMO+2		54	
510	HOMO-1	LUMO	0.1990	24	
	HOMO-1	LUMO+2		32	
	НОМО	LUMO+1		44	
445	HOMO-7	LUMO	0.8681	41	
	HOMO-1	LUMO+1		36	
	НОМО	LUMO+2		23	
419	HOMO-7	LUMO+1	1.0557	9	
	HOMO-6	LUMO		9	
	HOMO-4	LUMO+1		16	
	HOMO-1	LUMO+2		41	
	НОМО	LUMO+1		25	

Table 1 TD-DFT calculated visible absorption wavelengths for **FLU-Por-MA**, indicating the molecular orbitals involved and their relative contribution to the absorption.

Table Percentage contributions from component parts of **FLU-Por-MA** to selected molecular orbitals. Also quoted are the calculated energies for these molecular orbitals. (Ar-based = trimethoxyaryl unit; S-based = thiophene-bisacetic acid unit)

МО	MO energy	% Contribution from					
	/ 6 V	Zn-based	Porphyrin- based	Fluorene- based	S- based	Ar- based	
НОМО-2	-5.95	0.01	5.71	88.55	0.89	4.84	
HOMO-1	-5.47	0	89.19	2.81	0	8.00	
НОМО	-5.20	0.86	62.25	3.99	22.69	10.21	
LUMO	-3.09	0.16	30.97	1.76	65.54	1.57	
LUMO+1	-2.43	0.23	87.90	2.19	0	9.68	
LUMO+2	-2.37	0.14	54.70	3.23	39.66	2.27	

The red dash curve is the calculated spectrum of FLU-Por-MA in DCM and the solid columns are the calculated electronic transitions.

Oxidative OTTLE studies of Flu_MA in 0.3 M TBABF₄/DCM with an applied potential of +1 V (vs. Ag/AgCl).

Overlay of initial and final spectra to show regeneration of Flu_MA did not occur. The studies were carried out at -2 °C. The regeneration process was carried out at +0.2 V.

TG/DTG curves of **PYR-Por-MA** with heating rate of 10 °C min⁻¹ under Nitrogen atmosphere.

