Supplementary Information

Determination of Energetics of Formation of Semiconductor/Dendrimer Nanohybrid Materials: Implications in Size and Size Distribution of Nanocrystals

Somrita Mondal, Debasmita Ghosh, Chandra Nath Roy and Abhijit Saha* UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8, Bidhananagar, Kolkata-700098, India

Figure S1. Luminescence spectra of CdS/dendrimer nanohybrids (collected from the reaction cell after completion of reaction) formed at different temperatures

Figure S2. ITC thermogram for formation of CdS/Dendrimer nanohybrid with Cd^{2+} : $S^{2-} = 1:20$, (a) Phase I (b) Phase II

Temp (⁰ C)	n	K (M ⁻¹)	$\Delta H (kJ mol^{-1})$	$\begin{array}{c} \Delta S \\ (kJ \text{ mol}^{-1} \\ K^{-1}) \end{array}$	ΔG (kJ mol ⁻¹)	$T \Delta S $ (kJ mol ⁻¹)
5	1.40	$(1.85\pm0.08) \times 10^4$	-75.2 ±1.5	-0.19	-23.0	-52.2
10	1.42	(1.66 ± 0.07) $\times10^{4}$	-74.3 ±1.1	-0.18	-22.8	-51.5
20	1.48	(1.48 ± 0.12) $\times10^{4}$	-63.8 ±1.4	-0.14	-23.3	-40.5
30	1.52	(6.67 ± 0.25) $\times10^{3}$	-33.2 ±1.7	-0.04	-22.3	-10.9
40	1.57	$(5.49\pm0.38) \times 10^{3}$	-31.2 ±1.6	-0.02	-24.2	-6.9

Table S1. Thermodynamic parameters for formation of ZnS/Dendrimer nanohybrid in phase I reaction at different temperatures

Table S2. Thermodynamic parameters for formation of ZnS/Dendrimer nanohybrid i	n phase I
reaction for different ratio of Zn^{2+} : S^{2-} ; (a) Zn^{2+} : $S^{2-} = 1:10$, (b) Zn^{2+} : $S^{2-} = 1:20$,	(c) Zn^{2+} :
$S^{2-} = 1:30$	

Zn ²⁺ :S ²⁻	n	K (M ⁻¹)	ΔH (kJ mol ⁻¹)	$\begin{array}{c} \Delta S \\ (kJ \text{ mol}^{-1} \\ K^{-1}) \end{array}$	ΔG (kJ mol ⁻¹)	$T \Delta S $ (kJ mol ⁻¹)
1:10	1.4	(1.3±0.08) ×10 ⁴	-(1.6±0.09) ×10 ⁴	-0.16	-21.9	-45.4
1:20	1.2	(1.0±0.06) ×10 ⁴	-(2.0±0.08) ×10 ⁴	-0.22	-21.4	-62.6
1:30	1.3	(6.3 ± 0.03) ×10 ³	-(2.3±0.09) ×10 ⁴	-0.27	-20.3	-76.2