Electronic Supplementary Information (ESI)

Pyrene-labeled pyrrolidinyl peptide nucleic acid as a hybridization-responsive DNA probe: Comparison between internal and terminal labeling

Chalothorn Boonlua,^{*a*} Boonsong Ditmangklo,^{*a*} Nisanath Reenabthue,^{*b*} Chaturong Suparpprom,^{*b*} Nattawee Poomsuk,^{*c*} Khatcharin Siriwong^{*c*} and Tirayut Vilaivan^{*a*,*}

^{*a*}Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand ^{*b*}Department of Chemistry, Faculty of Science, Naresuan University, Ta-Po District, Muang, Phitsanulok 65000, Thailand

^cMaterials Chemistry Research Unit, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand

*E-mail: vtirayut@chula.ac.th

Content

		Page
Fig. S1	Analytical HPLC chromatogram and MALDI-TOF mass spectrum of terminally PyBtr-labeled T9	3
Fig. S2	Analytical HPLC chromatogram and MALDI-TOF mass	4
Fig. S3	Analytical HPLC chromatogram and MALDI-TOF mass	5
Fig. S4	Analytical HPLC chromatogram and MALDI-TOF mass spectrum of terminally PyBtr-labeled M12	6
Fig. S5	Analytical HPLC chromatogram and MALDI-TOF mass spectrum of internally PyBtr-labeled TT	7
Fig. S6	Analytical HPLC chromatogram and MALDI-TOF mass spectrum of internally PyBtr-labeled AA	8
Fig. S7	Analytical HPLC chromatogram and MALDI-TOF mass spectrum of internally PyBtr-labeled CC	9
Fig. S8	Analytical HPLC chromatogram and MALDI-TOF mass spectrum of internally PyBtr-labeled GG	10
Fig. S9	Analytical HPLC chromatogram and MALDI-TOF mass spectrum of internally PyBtr-labeled T9 TT	11
Fig. S10	Analytical HPLC chromatogram and MALDI-TOF mass spectrum of internally PyBtr-labeled M10_AT	12
Fig. S11	Analytical HPLC chromatogram and MALDI-TOF mass spectrum of internally PyBtr-labeled M11_TT	13
Fig. S12	Analytical HPLC chromatogram and MALDI-TOF mass spectrum of internally PyBtr-labeled M11_TC	14
Fig. S13	Analytical HPLC chromatogram and MALDI-TOF mass spectrum of internally PyBtl-labeled M11_AAAA	15
Fig. S14	Analytical HPLC chromatogram and MALDI-TOF mass spectrum of internally PyBtl-labeled M11_ATTA	16
Fig. S15	Analytical HPLC chromatogram and MALDI-TOF mass spectrum of internally PyBtl-labeled M11_ACCA	17
Fig. S16	Analytical HPLC chromatogram and MALDI-TOF mass spectrum of internally PyBtl-labeled M11_AGGA	18
Fig. S17	Analytical HPLC chromatogram and MALDI-TOF mass spectrum of internally PyBtl-labeled M11_TAAT	19
Fig. S18	Analytical HPLC chromatogram and MALDI-TOF mass spectrum of internally PyBtl-labeled M11_TTTT	20
Fig. S19	Analytical HPLC chromatogram and MALDI-TOF mass spectrum of internally PyBtr-labeled M12_AT(Btr)	21
Fig. S20	Analytical HPLC chromatogram and MALDI-TOF mass spectrum of internally PyBtl-labeled M12_AT(Btl)	22
Fig. S21	CD spectra of unlabeled and PyBtl-labeled acpcPNA M12_AT(Btl)	23
Fig. S22	Kinetics of nuclease S1 digestion of hybrids between PyBtr-labeled acpcPNA M11_TT with various DNA	23

Fig. S1. Analytical HPLC chromatogram (a) and MALDI-TOF mass spectrum (b) of terminally PyBtr-labeled **T9** (calcd. for $[M+H]^+$: m/z = 3407.73).

Fig. S2. Analytical HPLC chromatogram (a) and MALDI-TOF mass spectrum (b) of terminally PyBtr-labeled **M10** (calcd. for $[M+H]^+$: m/z = 3787.13).

Fig. S3. Analytical HPLC chromatogram (a) and MALDI-TOF mass spectrum (b) of terminally PyBtr-labeled **M11** (calcd. for $[M+H]^+$: m/z = 4112.50).

Fig. S4. Analytical HPLC chromatogram (a) and MALDI-TOF mass spectrum (b) of terminally PyBtr-labeled **M12** (calcd. for $[M+H]^+$: m/z = 4412.80).

Fig. S5. Analytical HPLC chromatogram (a) and MALDI-TOF mass spectrum (b) of internally PyBtr-labeled **TT** (calcd. for $[M+H]^+$: m/z = 1013.20).

Fig. S6. Analytical HPLC chromatogram (a) and MALDI-TOF mass spectrum (b) of internally PyBtr-labeled **AA** (calcd. for $[M+H]^+$: m/z = 1031.23).

Fig. S7. Analytical HPLC chromatogram (a) and MALDI-TOF mass spectrum (b) of internally PyBtr-labeled **CC** (calcd. for $[M+H]^+$: m/z = 983.17).

Fig. S8. Analytical HPLC chromatogram (a) and MALDI-TOF mass spectrum (b) of internally PyBtr-labeled **GG** (calcd. for $[M+H]^+$: m/z = 1063.22).

Fig. S9. Analytical HPLC chromatogram (a) and MALDI-TOF mass spectrum (b) of internally PyBtr-labeled **T9_TT** (calcd. for $[M+H]^+$: m/z = 3450.75).

Fig. S10. Analytical HPLC chromatogram (a) and MALDI-TOF mass spectrum (b) of internally PyBtr-labeled **M10_AT** (calcd. for $[M+H]^+$: m/z = 3892.21).

Fig. S11. Analytical HPLC chromatogram (a) and MALDI-TOF mass spectrum (b) of internally PyBtr-labeled **M11_TT** (calcd. for $[M+H]^+$: m/z = 4283.69).

Fig. S12. Analytical HPLC chromatogram (a) and MALDI-TOF mass spectrum (b) of internally PyBtr-labeled **M11_TC** (calcd. for $[M+H]^+$: m/z = 4283.69).

Fig. S13. Analytical HPLC chromatogram (a) and MALDI-TOF mass spectrum (b) of internally PyBtl-labeled **M11_AAAA** (calcd. for $[M+H]^+$: m/z = 4150.45).

Fig. S14. Analytical HPLC chromatogram (a) and MALDI-TOF mass spectrum (b) of internally PyBtl-labeled **M11_ATTA** (calcd. for $[M+H]^+$: m/z = 4132.42).

Fig. S15. Analytical HPLC chromatogram (a) and MALDI-TOF mass spectrum (b) of internally PyBtl-labeled **M11_ACCA** (calcd. for $[M+H]^+$: m/z = 4102.40).

Fig. S16. Analytical HPLC chromatogram (a) and MALDI-TOF mass spectrum (b) of internally PyBtl-labeled **M11_AGGA** (calcd. for $[M+H]^+$: m/z = 4182.45).

Fig. S17. Analytical HPLC chromatogram (a) and MALDI-TOF mass spectrum (b) of internally PyBtl-labeled **M11_TAAT** (calcd. for $[M+H]^+$: m/z = 4132.42).

Fig. S18. Analytical HPLC chromatogram (a) and MALDI-TOF mass spectrum (b) of internally PyBtl-labeled **M11_TTTT** (calcd. for $[M+H]^+$: m/z = 4114.49).

Fig. S19. Analytical HPLC chromatogram (a) and MALDI-TOF mass spectrum (b) of internally PyBtr-labeled **M12_AT(Btr)** (calcd. for $[M+H]^+$: m/z = 4583.99).

Fig. S20. Analytical HPLC chromatogram (a) and MALDI-TOF mass spectrum (b) of internally PyBtl-labeled **M12_AT(Btl)** (calcd. for $[M+H]^+$: m/z = 4569.03).

Fig. S21. CD spectra of unlabeled acpcPNA **M12** (a) and internally PyBtl-labeled acpcPNA **M12_AT(Btl)** (b) and their hybrids with complementary DNA (3'-TCAATAGGG ACG-5'): single stranded PNA (blue); single stranded DNA (red); mixture of acpcPNA:DNA (green); sum CD spectra of acpcPNA and DNA (purple). The CD spectra were measured in 10 mM sodium phosphate buffer, pH 7.0, [PNA] = 2.5μ M, [DNA] = 3.0μ M.

Fig. S22. Kinetics of nuclease S1 digestion of hybrids between internally PyBtrlabeled acpcPNA **M11_TT** with complementary and single base mismatched DNA; [PNA] = 1.0 μ M, [DNA] = 1.0 μ M in 30 mM sodium acetate buffer pH 4.6, 1 mM zinc acetate, 5% glycerol. Excitation wavelength was 345 nm. DNA sequence (3' \rightarrow 5'): GATTT<u>AAGTCT</u>; GATTT<u>AAGTCT</u>; GATTT<u>AATTCT</u>; GATTT<u>TAGTCT</u>; GATTT<u>AAGTCT</u>; GATT<u>AAGTCT</u>; GATTT<u>AAGTCT</u>; GATTT<u>AAGTCT</u>; GATT<u>AAAGTCT</u>; GATT<u>AAGTCT</u>; GATT<u>AAGTCT</u>; GATT<u>AAGTCT</u>; GATT<u>GAAGTCT</u>; GATT<u>GAAGTC</u>; GATT<u>GAAGTC</u>; GATT<u>GAAGTC</u>; GATT<u>GAAGTC</u>; GATT<u>GAAGTC</u>; GATT<u>GAAGTC</u>; GATT<u>GAAGTC</u>; GATT<u>GAAGTC</u>; GATT<u>GAAGTC</u>; GATT<u>GAAG</u>; GATT