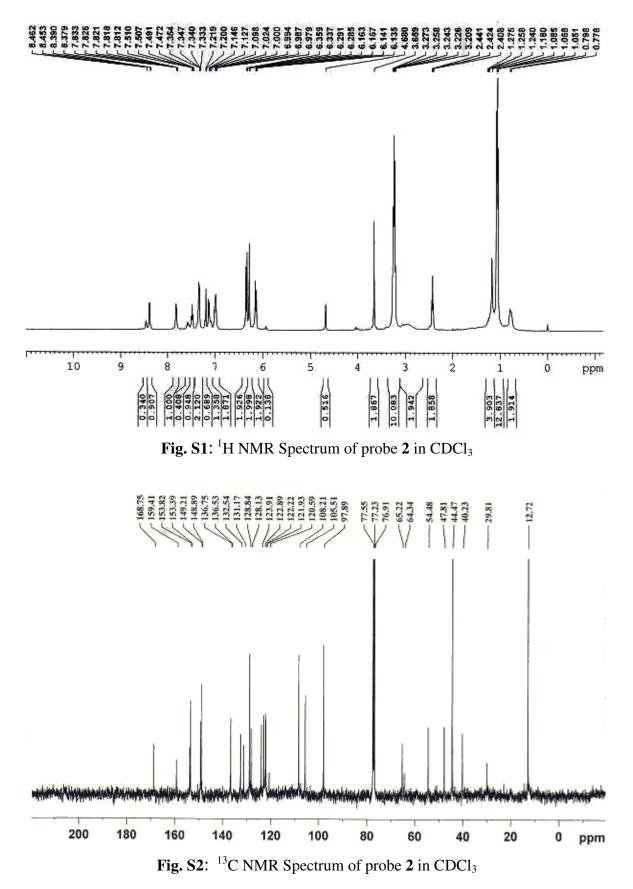

Rhodamine based "off-on" probe for selective detection of Hg(II) and subsequent L-Proline and 4-Hydroxyproline discrimination.

Ajoy Pal and Bamaprasad Bag*

Colloids and Materials Chemistry Department; Academy of Scientific and Innovative Research, CSIR-Institute of Minerals and Materials Technology, P.O.: R.R.L., Bhubaneswar-751013, India. Email: bpbag@immt.res.in.


Electronic Supplementary Information

Scheme S1: Synthetic route to compound 2

To an ethanolic solution(10 mL) of **1** (0.2325g, 0.479 mmol), Pyridine-2-carboxaldehyde (0.6mL, excess) was added and stirred at room temperature for 20 h. The Schiff base thus formed was reduced upon addition of NaBH₄ in portions. The reaction mixture was allowed to react for 5 h at room temperature followed by reflux for 1h to ensure complete reduction. The solvent was then evaporated to dryness under reduced pressure. Distilled water was added to the solid mass and the organic part was collected after extraction with CHCl₃ (3×30 mL). Each organic layer was dried over anhydrous Na₂SO₄, filtered and the combined filtrate was evaporated under reduced pressure to get a solid mass which was purified and separated through column chromatography using neutral alumina with 1% MeOH in CHCl₃.

Yield: 0.233 g (84%); ESI-MS, m/z^+ (%): 576.3 [M+1]⁺, (100%); ¹H-NMR (400 MHz, CDCl₃, 25°C, TMS, δ): 8.453 (d, J = 3.6 Hz, 1H), 8.379 (d, J = 4.4 Hz, 2H), 7.812 (m, 2H), 7.507 (t, J = 1.2 Hz, 2H), 7.333 (dd, $J_1 = 2.8$ Hz, $J_2 = 2.8$ Hz 3H), 7.146 (d, J = 7.6 Hz, 2H), 6.979 (m, 4H), 6.394 (s, 2H), 6.359 (s, 3H), 6.285 (d, J = 2.4Hz,4H), 6.135(dd, J = 2.4Hz, 3H), 3.659 (s, 4H), 3.226 (t, J = 6.8 Hz, 10H), 2.408 (t, J = 6.4 Hz, 4H), 1.051 (t, J = 6.8 Hz, 14 H); ¹³C-NMR (100 MHz, CDCl₃, 25 °C, TMS, δ): 168.75, 159.41, 153.39, 148.89, 136.53, 132.54, 131.17, 128.13, 123.91, 122.22, 121.93, 120.59, 108.21, 105.51, 97.89, 65.22, 54.48, 47.81, 44.47, 40.23, 29.81, 12.72; Anal. Calcd. for C₃₆H₄₁N₅O₂, %: C, 75.1, H, 7.18, N, 12.16. Found: C, 75.34, H, 7.97, N 11.73.

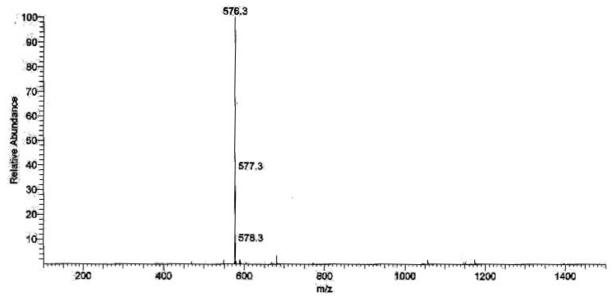
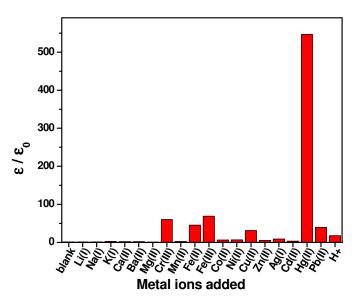
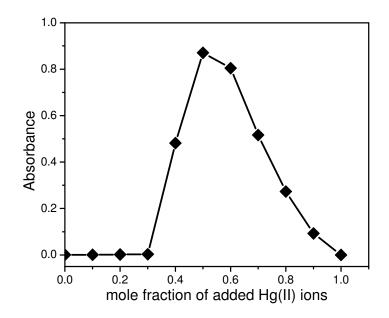




Fig. S3: ESI Mass Spectrum of probe 2

Absorption and Emission Studies

Fig. S4: Bar diagram corresponding to absorption spectral profile of **2**, before and after addition of various metal ions in MeCN-H₂O (1:1 v/v, Tris-HCl, pH 7.2). [**2**] = 1×10^{-4} M.

Fig. S5: Plot of absorbance of **2** observed at 558nm against mole fractions of added Hg(II) ions in MeCN-H₂O (1:1 v/v), $[\mathbf{2}] = 1 \times 10^{-4}$ M.

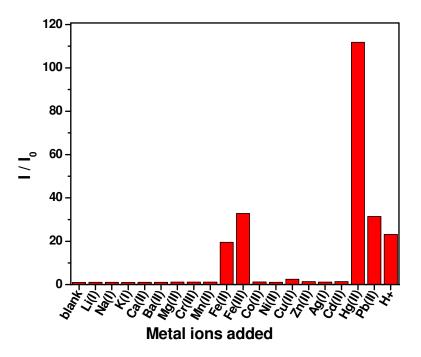
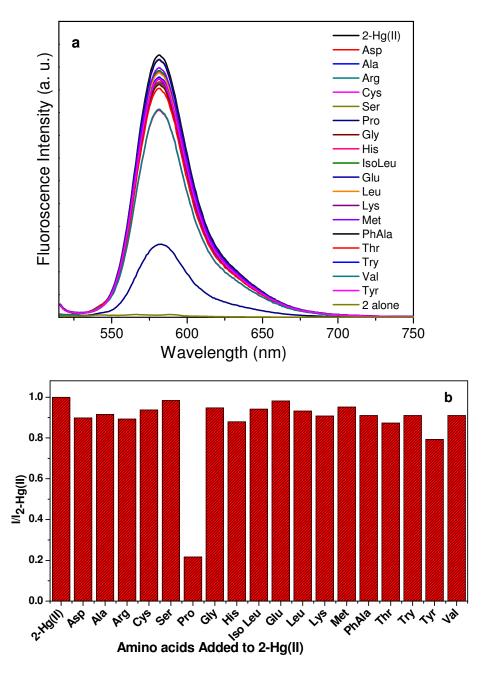
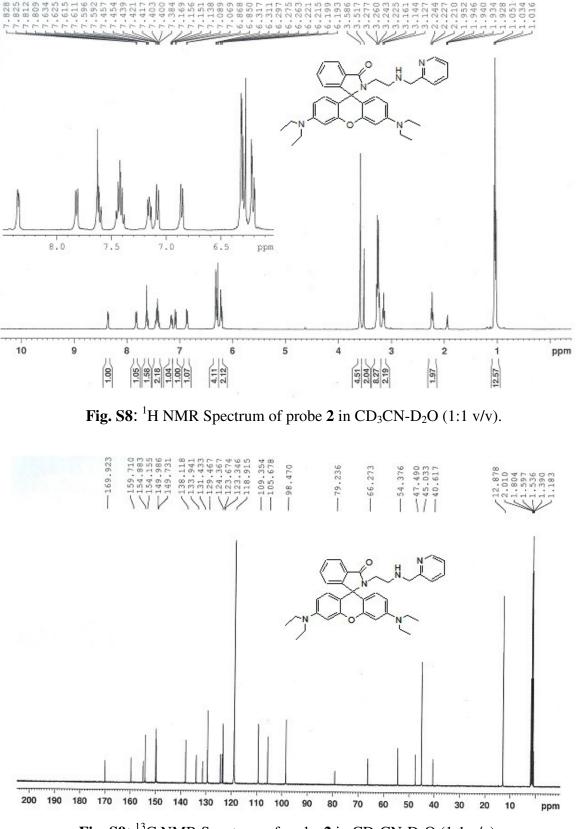




Fig. S6: Bar diagram corresponding to fluorescence of 2 before and after addition of various metal ions in MeCN-H₂O (1:1 v/v), $\lambda_{ex} = 500$ nm, ex. and em. b. p. = 5nm, RT, [2] = 1×10^{-6} M.

Fig. S7: (a) Fluorescence spectra of **2**-Hg(II) with addition of amino acids and (b) the corresponding bar diagram corresponding to the emission of **2**-Hg(II) + (Amino acids) at ~580 nm in MeCN-H₂O (1:1 v/v), [**2**] = 1×10^{-6} M, $\lambda_{ex} = 500$ nm, ex. and em. b. p. = 5nm, RT.

Fig. S9: ¹³C NMR Spectrum of probe **2** in CD₃CN-D₂O (1:1 v/v).