
Supporting Information

Optical and Photocatalytic Behaviours of Nanoparticles in the Ti-Zn-O Binary System

Josephine B. M. Goodall,^a Suela Kellici,^b Derek Illsley,^c Robert Lines,^c Jonathan C Knowles^{d,e} and Jawwad A. Darr^{*a}

Powder XRD spectra were taken on an X-pert Pro PW3064/60 diffractometer with a high-throughput stage and Cu-K α radiation ($\lambda = 0.15418$ nm). Continuous scans were collected over the 2 θ range 20 - 80 ° with a step size of 0.02 ° for a dwell time of 2 s per step.

Figure S1: XRD spectra of TiO₂:ZnO nano-coprecipitates (o- anatase peaks, •- ZnO peaks).

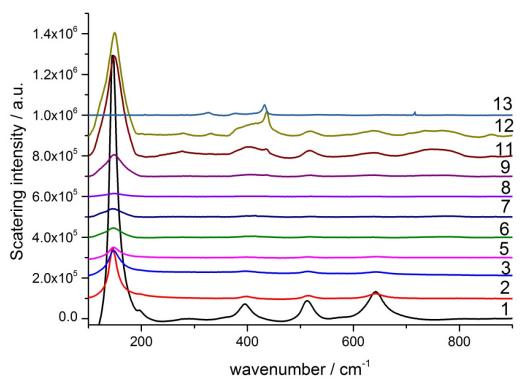


Figure S2: Raman spectra of selected TiO₂: ZnO coprecipitates

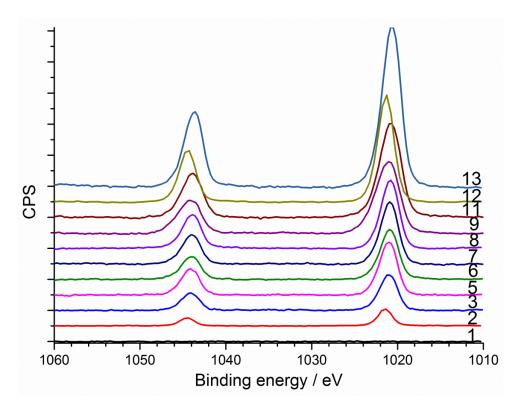


Figure S3: XPS spectra of the Zn 2p region for selected TiO₂:ZnO coprecipitates

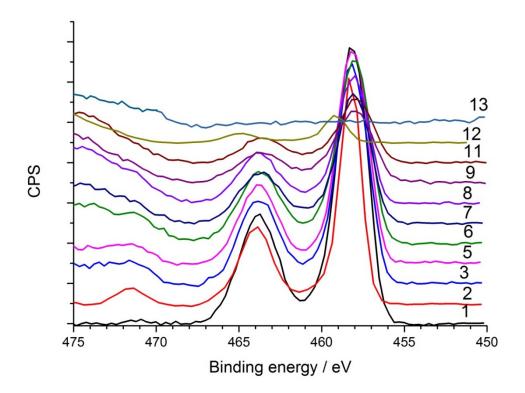


Figure S4: XPS spectra of the Ti 2p region for selected TiO₂:ZnO coprecipitates

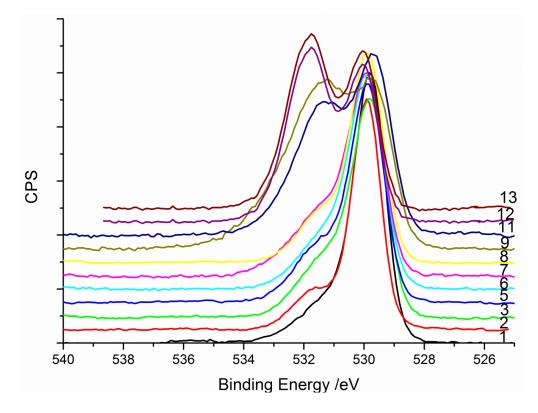


Figure S5: XPS spectra of the O1s region for selected TiO₂:ZnO coprecipitates

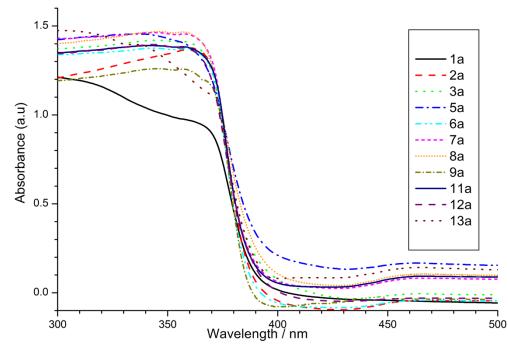
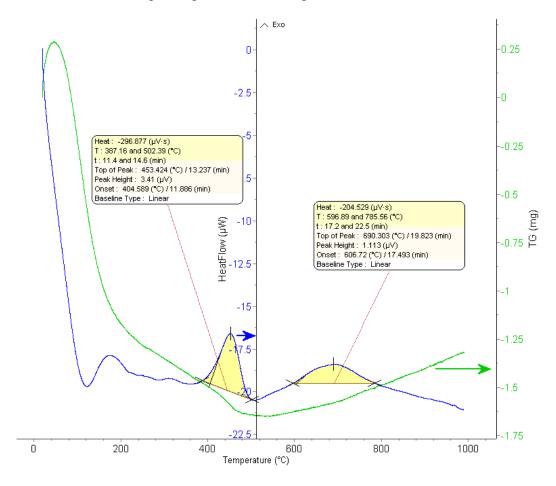


Figure S6: The UV-Vis absorption spectra of the samples after heat treatment to 850 °C for 5 hrs.



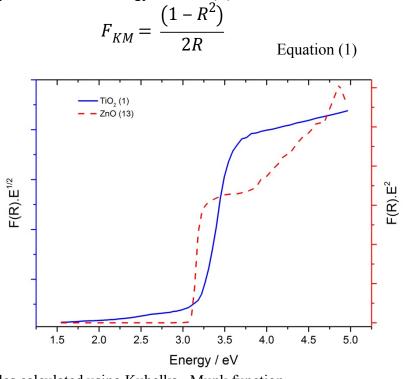


Figure S7: STA of sample 8 (60:40 Ti:Zn) heated at 10 °C.min⁻¹ in air.

Figure S8: First order rate constant of nanopowders (samples 1-13) for the decolourisation of MB (rate constant of as-prepared samples).

To calculate the bandgap, The Kubelka-Munk (K-M) function and Tauc plots were used. The K-M function, (F(R)) used is shown in equation 1 (R is the reflectance) and the factors for indirect $(F(R).E^{1/2})$ and direct $(F(R).E^2)$ band gaps used for the Tauc plots were plotted against photon energy. The K-M function defined below for direct and indirect energy transitions was plotted against the photon energy and E_g was determined as the energy coordinate of the point on the low energy side of F(R) curve at which the linear increase starts.

of bandgap values

for pure $\mathrm{TiO}_2\,$ and ZnO samples calculated using Kubelka –Munk function

Figure S9: Determination

0			
_	Bandgap /eV		
Sample	Direct	Indirect	
1a	3.25	3.18	
2a	3.24	3.23	
3a	3.23	3.22	
5a	3.20	3.19	
6a	3.25	3.24	
7a	3.23	3.23	
8a	3.32	3.32	
9a	3.24	3.23	
11a	3.23	3.22	
12a	3.24	3.22	
13a	3.32	3.31	

Table S1: Bandgap values for zinc titanate samples

Adsorption coefficients Q were calculated using the following formula¹

$$Q = \frac{V\Delta C}{m}$$
 Equation (S1)

Where:

 $\Delta \mathbf{C}$ = the difference between the initial concentration (*C*₀) and the equilibrium concentration (C), *V* = the volume methylene blue solution used (0.05 L)

 \mathbf{m} = the mass of catalyst (0.1 g).

Table S2: Adsorption coefficient	¹ values for Zn-Ti-O samples
----------------------------------	---

Sample	Adsorption Coefficient
100/0	1.10
90/10	0.19
80/20	0.00
70/30	0.15
75/25	0.24
60/40	0.21
50/50	0.06
40/60	0.03
30/70	0.02

Sample	Adsorption Coefficient
25/75a	0.10
20/80a	0.03
10/90a	0.05
0/100	0.20
20/80	0.06
25/75	0.10
30/70	0.02
Optisol	0.14
P25	0.09

 Table S3: Adsorption coefficient values for zinc titanate samples (heat- treated)

References:

1. S Khezrianjoo, H. D. Revanasiddappa, Chem. Sci. J., Vol. 2012: CSJ-85.