## **Supporting Information**

# Copper catalyzed nitrile synthesis from aryl halides using formamide as a nitrile source

Ashok B. Khemnar and Bhalchandra M. Bhanage\* Department of Chemistry, Institute of Chemical Technology Matunga, Mumbai–400019. India. Fax: +91 22 3361 1020

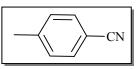
E-mail: bm.bhanage@gmail.com, bm.bhanage@ictmumbai.edu.in

#### **Table of Contents**

| I. General Information                                            |    |
|-------------------------------------------------------------------|----|
| II. General experimental procedure for nitrile synthesis          | S2 |
| III. <sup>1</sup> H NMR and <sup>13</sup> C NMR data of products  |    |
| IV. <sup>1</sup> H NMR and <sup>13</sup> C NMR copies of products |    |

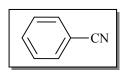
#### **General information**

#### **Materials and Methods:**


All the reagents were purchased from Sigma-Aldrich and Alfa Aesar. The solvents were purchased from commercial suppliers and used without further purification. GC equipped with flame ionization detector and a capillary column (Elite-1, 30 m × 0.32 mm × 0.25 µm) was used for gas chromatography analysis. The mass of the products were identified using GC-MS-QP 2010 instrument (Rtx-17, 30 m × 25 mm ID, film thickness (df) = 0.25 µm) (column flow 2 mLmin<sup>-1</sup>, 80 °C to 240 °C at 10 °C/min rise). The products were purified by column chromatography on silica gel (100-200 mesh). The <sup>1</sup>H NMR spectra was recorded at 400 MHz spectrometer in CDCl<sub>3</sub> using TMS as an internal standard. The <sup>13</sup>C NMR spectra were reported in Hz. Splitting patterns of proton are described as bs (broad singlet), s (singlet), d (doublet), t (triplet) and m (multiplet). The products were confirmed by the comparison of their GC-MS spectra, <sup>1</sup>H and <sup>13</sup>C NMR spectra with those of authentic data.

#### General experimental procedure for nitrile synthesis from aryl halide:

The 4-iodotoluene (1a, 1 mmol), CuI (20 mol%) and PPh<sub>3</sub> (20 mol%) were added in formamide (10 mLmmol<sup>-1</sup>) into two-necked round-bottomed flask (25 mL) equipped with a condenser at room temperature under nitrogen atmosphere. The mixture was stirred for 2–3 minutes at room temperature and POCl<sub>3</sub> (2 mmol) was added to the reaction mixture. The reaction flask equipped with a condenser placed in oil bath and stirred the reaction mixture for 24 h at 140 °C under nitrogen atmosphere. After cooling to room temperature, the resultant mixture was added to saturated solution of NaHCO<sub>3</sub> (50 mL) and extracted with diethyl ether (3×15 mL). The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and it was evaporated under reduced pressure. The GC yield is quantified by using the external standard method using *p*-tolunitrile. The residue was then purified by column chromatography on silica gel (100-200 mesh; petroleum ether/ethyl acetate) and the products were confirmed by GCMS, <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic analysis.


Spectral data:

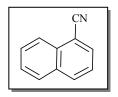
4-Methylbenzonitrile (3a)



Colourless liquid; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.53 (d, *J* = 8 Hz, 2H), 7.27 (d, *J* = 8 Hz, 2H), 2.42 (s, 3H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  143.74, 132.02, 129.96, 119.16, 109.28, 21.82. GC-MS (EI): *m/z* 117(100) [M]<sup>+</sup>, 116 (55.1), 90 (36.6), 63 (18.7).

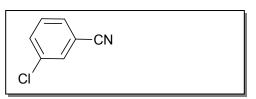
#### **Benzonitrile (3c)**




Colourless liquid; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.68-7.65 (m, 2H), 7.61 (t, *J* = 7.6 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  132.77, 132.17, 129.12, 118.85, 112.48. GC-MS (EI): *m/z* 103(100) [M]<sup>+</sup>, 76 (38.8), 50 (12).

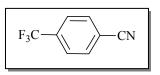
## 2-Methoxybenzonitrile (3e)




Light yellow solid; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.57-7.53 (m, 2H), 7.03-6.97 (m, 2H), 3.93 (s, 3H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  161.23, 134.43, 133.74, 120.77, 116.53, 111.31, 101.76, 56.00. GC-MS (EI): *m*/*z* 133(100) [M]<sup>+</sup>, 105 (49.8), 90 (51.5), 77(23.5), 63(42.5), 51(16.5).

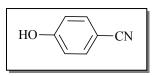
## 1-Naphthonitrile (3f)




White solid; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.23 (d, *J* = 8.4 Hz, 1H), 8.07 (d, *J* = 8.4 Hz, 1H), 7.93-7.90 (m, 2H), 7.69 (t, *J* = 7.2 Hz, 1H), 7.62 (t, *J* = 7.2 Hz, 1H), 7.52 (t, *J* = 8 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  133.28, 132.92, 132.63, 132.36, 128.66, 128.60, 127.55, 125.12, 124.92, 117.82, 110.19. GC-MS (EI): *m/z* 153(100) [M]<sup>+</sup>, 126 (25.4), 63 (10.9).

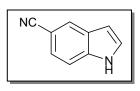
## 3-Chlorobenzonitrile (3k)




White solid; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.65-7.64 (m, 1H), 7.61-7.56 (m, 2H), 7.44 (t, J = 8 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  135.26, 133.25, 131.94, 130.51, 130.31, 117.45, 113.98. GC-MS (EI): m/z 137 (100) [M]<sup>+</sup>, 102 (30.4), 75 (14).

## 4-(trifluoromethyl)benzonitrile (3l)

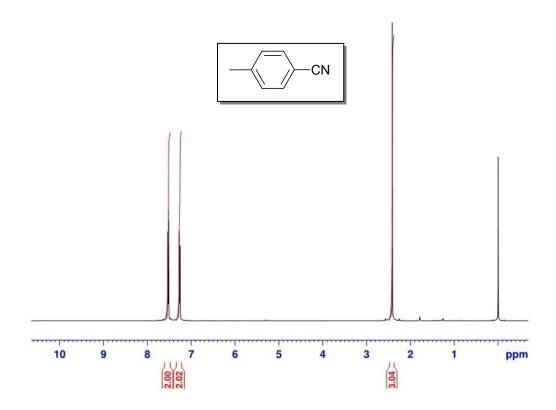



White solid; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.82 (d, *J* = 8.4 Hz, 2H), 7.77 (d, *J* = 8.4 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  134.44, 132.76, 126.27, 124.48, 117.50, 116.14. GC-MS (EI): *m*/*z* 171 (100) [M]<sup>+</sup>, 170 (23.2), 152 (38.4), 121 (56.7), 102 (10.3), 76 (10.6), 44 (17.1).

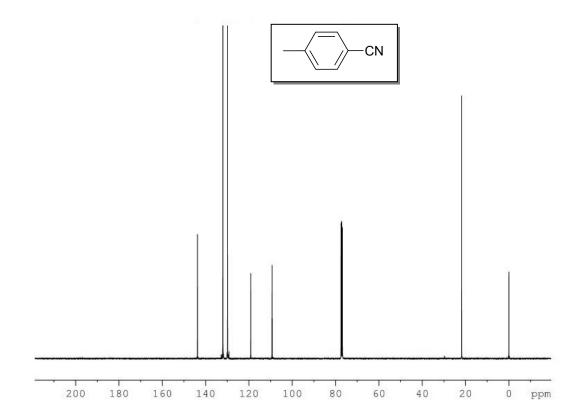
#### 4-Hydroxybenzonitrile (3m)



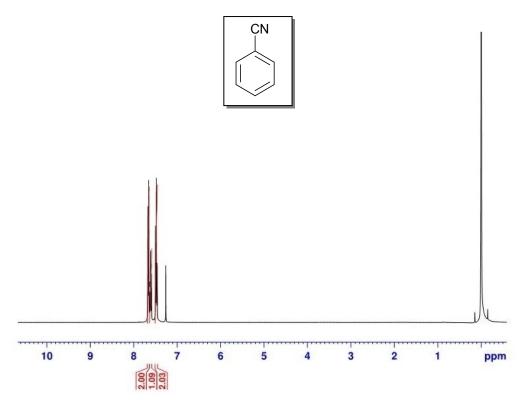
White solid; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.56 (d, *J* = 8.8 Hz, 2H), 6.95 (d, *J* = 8.8 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  160.38, 134.35, 119.30, 116.51, 102.86. GC-MS (EI): *m/z* 119 (100) [M]<sup>+</sup>, 91 (27.2), 64 (30.3), 63 (17.7), 44 (11.5).


## 1H-Indole-5-carbonitrile (3n)

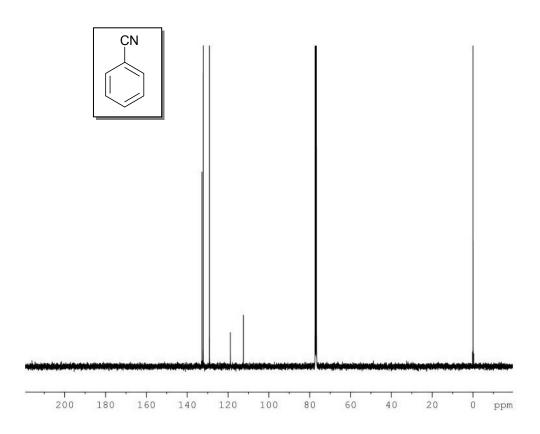



Yellowish solid; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.79 (bs, 1H), 7.99 (s, 1H), 7.48 (d, J = 8.4 Hz, 1H), 7.41 (dd, J = 8.4, 1.2 Hz, 1H), 7.35 (t, J = 2.8 Hz, 1H), 6.63-6.62 (m, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  137.55, 127.67, 126.57, 126.39, 124.80, 120.95, 112.08, 103.35, 102.95. GC-MS (EI): m/z 142 (100) [M]<sup>+</sup>, 115 (38.3), 114 (18), 89 (10), 88 (14.5), 45 (18.3), 44 (11.4).

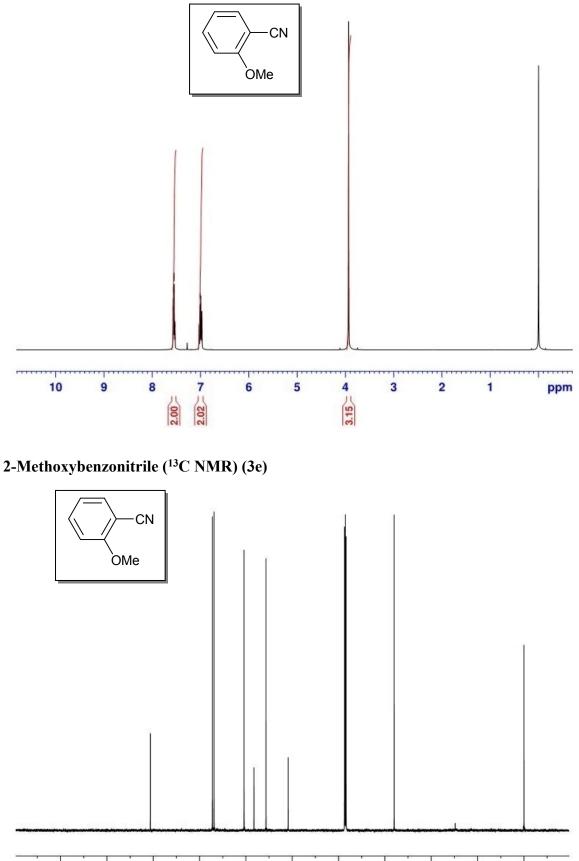
<sup>1</sup>H and <sup>13</sup>C NMR Spectra of Products:


```
4-Methylbenzonitrile (<sup>1</sup>H NMR) (3a)
```



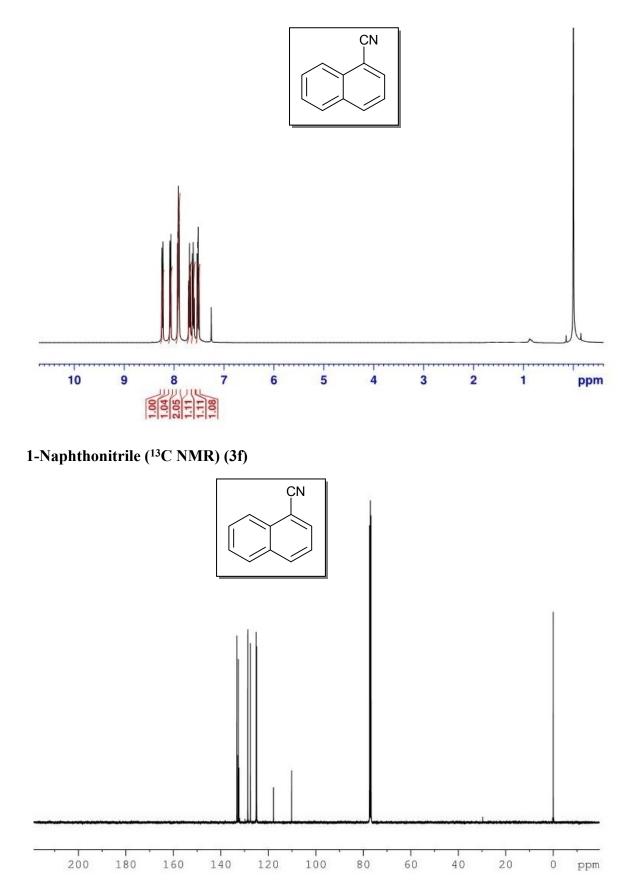

4-Methylbenzonitrile (<sup>13</sup>C NMR) (3a)



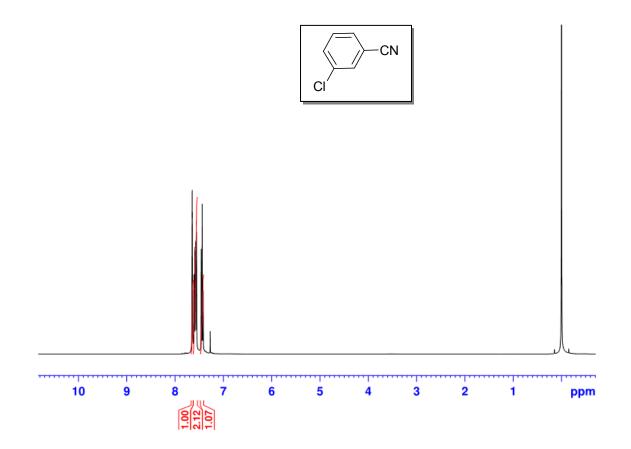

# Benzonitrile (<sup>1</sup>H NMR) (3c)



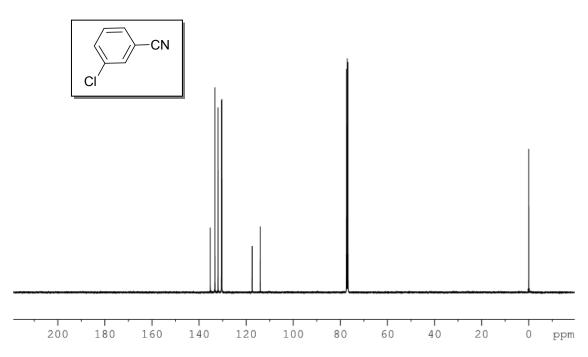
Benzonitrile (<sup>13</sup>C NMR) (3c)



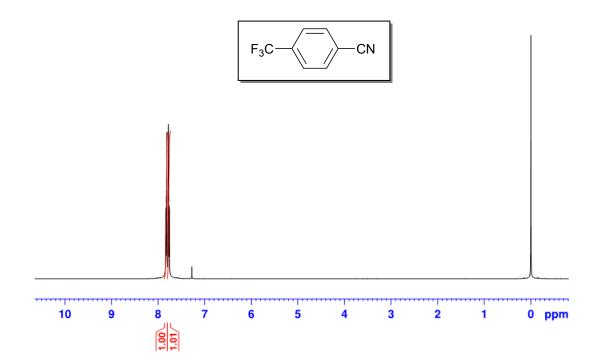

## 2-Methoxybenzonitrile (<sup>1</sup>H NMR) (3e)



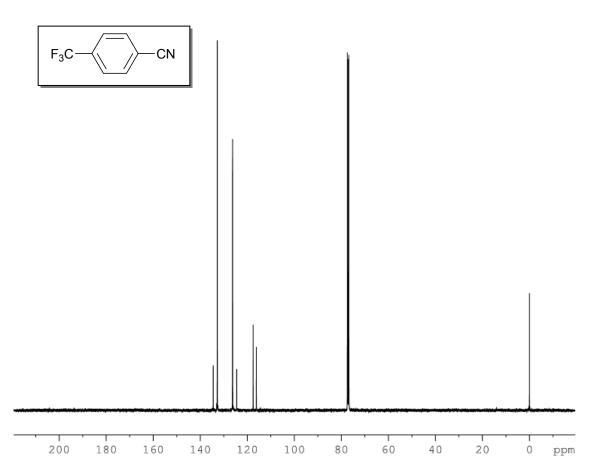

200 180 160 140 120 100 80 60 40 20 0 ppm


# 1-Naphthonitrile (<sup>1</sup>H NMR) (3f)

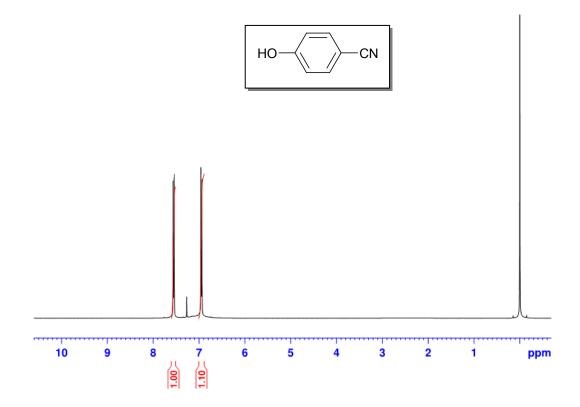



# 3-Chlorobenzonitrile (<sup>1</sup>H NMR) (3k)

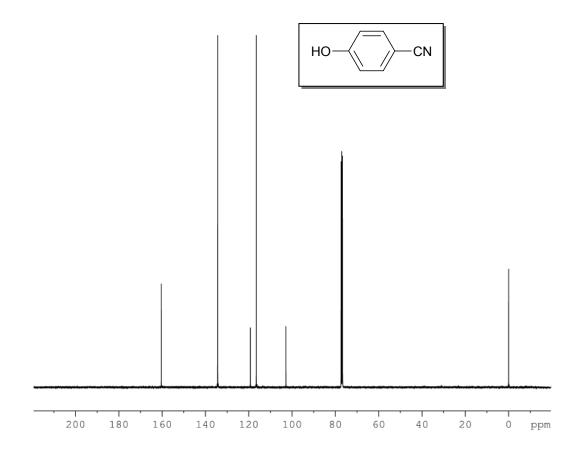



## 3-Chlorobenzonitrile (<sup>13</sup>C NMR) (3k)

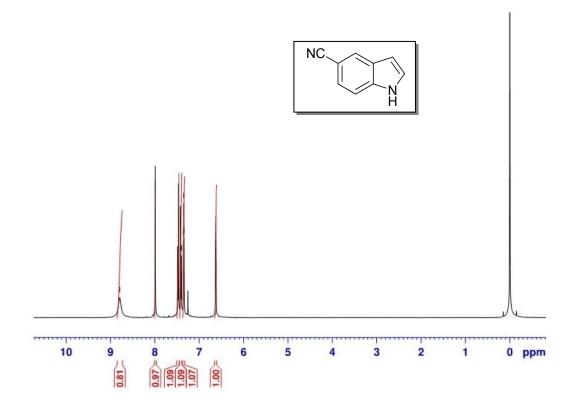



## 4-(trifluoromethyl)benzonitrile (<sup>1</sup>H NMR) (3l)




## 4-(trifluoromethyl)benzonitrile (<sup>13</sup>C NMR) (3l)




# 4-Hydroxybenzonitrile (<sup>1</sup>H NMR) (3m)



4-Hydroxybenzonitrile (<sup>13</sup>C NMR) (3m)



## 1H-Indole-5-carbonitrile (<sup>1</sup>H NMR) (3n)



1H-Indole-5-carbonitrile (<sup>13</sup>C NMR) (3n)

