Supplementary Information for

8-TQEN (*N*,*N*,*N*',*N*'-tetrakis(8-quinolylmethyl)ethylenediamine) Analogs as Fluorescent Cadmium Sensors: Strategies to Enhance Cd²⁺-Induced Fluorescence and Cd²⁺/Zn²⁺ Selectivity

Yuji Mikata,^{a,b,*} Ayaka Takekoshi,^b Asako Kizu,^b Yuki Nodomi,^b Masato Aoyama,^c Keiko Yasuda,^c Satoshi Tamotsu,^c Hideo Konno^d and Shawn C. Burdette^{e,*}

^aKYOUSEI Science Center, ^bDepartment of Chemistry, and ^cDepartment of Biological Sciences, Faculty of Science, Nara Women's University, Nara 630-8506, Japan and ^dDepartment of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609-2280

Experimental

6-Methoxy-8-methylquinoline. To the refluxing mixture of 4-methoxy-2-methylaniline (2.00 g, 14.6 mmol), glycerol (13.4 g, 146 mmol) and dry nitrobenzene (3.0 mL, 29.2 mmol) was added sulfuric acid (3.0 mL, 56.3 mmol) and further refluxed for 5 h. The resultant solution was cooled to r.t., added 30 mL of water and treated with activated carbon. The filtrate was washed with ether and resultant aqueous layer was made to alkaline (pH > 12) and extracted with dichloromethane. The organic layer was dried and evaporated to give 6-methoxy-8-methylquinoline (941 mg, 5.43 mmol, 37%).

¹H NMR (CDCl₃): δ (ppm) 8.79 (dd, *J* = 1.8, 4.3 Hz, 1H), 8.03 (dd, *J* = 1.8, 8.2 Hz, 1H), 7.35 (dd, *J* = 4.3, 8.2 Hz, 1H), 7.23 (dd, *J* = 1.1, 2.7 Hz, 1H), 6.92 (d, *J* = 2.7 Hz, 1H), 3.92 (s, 3H), 2.78 (s, 3H).

¹³C NMR (CDCl₃): δ (ppm) 156.9, 146.5, 143.4, 138.5, 134.8, 129.2, 122.0, 121.0, 102.9, 55.4, 18.3.

6-Methoxyquinoline-8-carboaldehyde. The mixture of 6-methoxy-8-methylquinoline (975 mg, 5.60 mmol) and SeO₂ (1.25 g, 11.2 mmol) in diglyme (30 mL) was refluxed for 42 h. The resultant solution was cooled to r.t., filtered with celite and evaporated to give 6-methoxyquinoline-8-carboaldehyde (844 mg, 4.51 mmol, 80%).

¹H NMR (CDCl₃): δ (ppm) 11.40 (s, 1H), 8.90 (dd, *J* = 1.7, 4.3 Hz, 1H), 8.14 (dd, *J* = 1.7, 8.2 Hz, 1H), 7.98 (d, *J* = 3.1 Hz, 1H), 7.46 (dd, *J* = 4.3, 8.2 Hz, 1H), 7.38 (d, *J* = 3.1 Hz, 1H).

¹³C NMR (CDCl₃): δ (ppm) 191.8, 156.8, 148.5, 143.2, 134.7, 132.4, 129.6, 121.8, 120.3, 112.3, 55.9.

Anal. Calcd for C₁₁H₉NO₂: C, 70.58; H, 4.85; N, 7.48. Found: C, 70.66; H, 4.82; N, 7.47.

8-Hydroxymethyl-6-methylquinoline. To the solution of 6-methoxyquinoline-8carboaldehyde (844 mg, 4.51 mmol) in ethanol (70 mL) was added NaBH₄ (204 mg, 5.41 mmol) and stirred for 5 h at room temperature. Water was added and the solution was extracted with dichloromethane, dried and evaporated to give 8-hydroxymethyl-6mthoxyquinoline as white solid (725 mg, 3.83 mmol, 85%).

¹H NMR (CDCl₃) : δ (ppm) 8.70 (dd, *J* = 1.8, 4.3 Hz, 1H), 8.07 (dd, *J* = 1.8, 8.2 Hz, 1H), 7.39 (dd, *J* = 4.3, 8.5 Hz, 1H), 7.24 (d, *J* = 2.7 Hz, 1H), 6.99 (d, *J* = 2.7 Hz, 1H), 5.15 (s, 3H), 3.92 (s, 3H).

¹³C NMR (CDCl₃): δ (ppm) 157.0, 146.1, 143.0, 139.4, 135.2, 129.5, 121.3, 120.2, 104.1, 64.5, 55.5.

Anal. Calcd for C₁₁H₁₁NO₂: C, 69.83; H, 5.86; N,7.40. Found: C,69.73; H, 5.83; N, 7.35.

8-Chloromethyl-6-methoxyquinoline. The solution of 8-hydroxymethyl-6-mthoxyquinoline (1.20 g, 6.34 mmol) and thionyl chloride (0.45 mL, 6.39 mmol) in dichloromethane (70 mL) was stirred for overnight at room temperature. The resultant solution was washed with saturated sodium carbonate. The organic layer was dried, evaporated and purified by column chromatography (Silica gel; eluent: ethyl acetate/hexane = 1/2) to give 8-chloromethyl-6-methoxyquinoline as white solid (747 mg, 3.60 mmol, 57%).

¹H NMR (CDCl₃): δ (ppm) 8.82 (dd, *J* = 1.5, 4.3 Hz, 1H), 8.05 (dd, *J* = 1.5, 8.2 Hz, 1H), 7.54 (d, *J* = 2.4 Hz, 1H), 7.39 (dd, *J* = 4.3, 8.2 Hz, 1H), 7.05 (d, *J* = 2.6 Hz, 1H), 5.28 (s, 2H), 3.94 (s, 3H).

¹³C NMR (CDCl₃) : δ (ppm) 156.8, 147.2, 141.7, 136.8, 134.7, 129.3, 124.4, 121.5, 105.5, 55.6, 42.3.

HRMS (ESI-MS) m/z: [M + Na]⁺ Calcd for C₁₁H₁₀ClNONa 230.0349; Found 230.0312.

Anal. Calcd for C₁₁H_{10.2}ClNO_{1.1} (with 0.1H₂O): C, 63.08; H, 4.91; N, 6.69. Found: C, 62.89; H, 4.80; N, 6.53.

N,N,N',N'-Tetrakis(8-quinolylmethyl)ethylenediamine (8-TQEN, 1a). To a dry CH_3CN solution (30 mL) of 8-bromomethylquinoline (1.72 g, 7.75 mmol) and ethylenediamine (0.13 mL, 1.94 mmol) was added potassium carbonate (1.74 g, 12.6 mmol) and potassium iodide

(573 mg, 3.45 mmol). The resulting reaction mixture was refluxed for 2 days under N_2 . The resultant solution was cooled to room temperature and the solvent was evaporated. The residue was washed with CHCl₃ and water to give compound **1a** as a white solid (450 mg, 0.72 mmol, 37%). This material is insoluble to water, ethanol, chloroform, DMF, DMSO and other common organic solvents.

Anal. Calcd for C₄₂H₃₆N₆ (**1a**·0.2H₂O): C, 80.29; H, 5.84; N, 13.37. Found: C, 80.07; H, 5.78; N, 13.28.

N,N,N',N'-Tetrakis(6-methoxy-8-quinolylmethyl)ethylenediamine (6-MeO-8-TQEN, 1b). To a dry CH₃CN solution (30 mL) of 6-methoxy-8-bromomethylquinoline (118 mg, 0.56 mmol) and ethylenediamine (9.5 μ L, 0.14 mmol) was added potassium carbonate (196 mg, 1.40 mmol) and potassium iodide (236 mg, 1.40 mmol). The resulting reaction mixture was refluxed for 2 days under N₂, cooled to room temperature and the solvent was evaporated. The residue was extracted with CHCl₃/water and the organic layer was dried and evaporated to give compound **1b** as a white solid (109 mg, 0.14 mmol, quant.).

¹H NMR (DMSO-*d*₆): δ (ppm) 8.60 (dd, 4 H, *J* = 1.7, 4.1 Hz), 8.17 (dd, 4 H, *J* = 1.7, 8.1 Hz), 7.61 (d, 4 H, *J* = 2.4 Hz), 7.40 (dd, 4 H, *J* = 4.1, 8.1 Hz), 7.12 (d, 4 H, *J* = 2.4 Hz), 4.32 (s, 8 H), 3.74 (s, 12 H), 2.93 (s, 4 H).

¹³C NMR (DMSO-*d*₆): δ (ppm) 156.7, 146.4, 142.0, 139.1, 134.8, 129.0, 121.3, 119.9, 103.8, 87.7, 55.2, 54.1.

HRMS (ESI-MS) *m/z*: [M + Na]⁺ Calcd for C₄₆H₄₄N₆O₄Na 745.3502; Found 745.3567.

Anal. Calcd for C₄₆H₄₅N₆O_{4.5} (**1b**·0.5H₂O): C, 73.28; H, 6.01; N, 11.14. Found: C, 73.23; H, 6.04; N, 11.17.

N,N,N',N'-Tetrakis(3-hydroxypropyl)propanediamine hydrobromide (3d·2HBr). The agitated mixture of 1,3-diaminopropane (2.08 mL, 25.0 mmol), 3-bromo-1-propanol (9.0 mL, 0.10 mol) and powdered sodium carbonate (9.24 g, 0.11 mol) in dry ethanol (50 mL) was

refluxed for three days under N_2 . The resultant solution was cooled to r.t. and the solvent was evaporated. The residue was extracted with CHCl₃, dried and evaporated to give compound **3d**·2HBr as orange oil (9.58 g, 20.5 mmol, 82%).

¹H NMR (D₂O): δ (ppm) 3.48 (t, J = 6.3 Hz, 8H), 2.38-2.51 (m, 12H), 1.54-1.62 (m, 10H).

¹³C NMR (D₂O): □δ (ppm) 60.3, 51.5, 51.0, 27.9.

HRMS (ESI-MS) m/z: $[M + Na]^+$ Calcd for C₁₅H₃₄N₂O₄Na 329.2416; Found 329.2416.

N,N,N',N'-Tetrakis(3-chloropropyl)ethylenediamine (4b). The solution of *N,N,N',N'*- tetrakis(3-hydroxypropyl)ethylenediamine hydrobromide ($3b \cdot 2HBr$) (691 mg, 1.52 mmol) and thionyl chloride (2.0 mL, 28 mmol) in dichloromethane (30 mL) was refluxed for overnight under N₂. The resultant solution was cooled to r.t. and washed with 6*N* NaOH_{aq}. The organic layer was dried and evaporated to give compound **4b** as colorless oil (397 mg, 1.08 mmol, 71%).

¹H NMR (CDCl₃): δ (ppm) 3.61 (t, *J* = 6.3 Hz, 8H), 2.56 (t, *J* = 6.6 Hz, 8H), 2.49 (s, 4H), 1.88 (quint, *J* = 6.4 Hz, 8H).

¹³C NMR (CDCl₃): □δ (ppm) 52.7, 51.2, 43.2, 30.4.

Anal. Calcd for C₁₄H₂₈Cl₄N₂ (**4b**): C, 45.92; H, 7.71; N, 7.65. Found: C, 46.52; H, 7.73; N, 7.86.

N,N,N',N'-Tetrakis(3-chloropropyl)propanediamine (4d). The solution of *N,N,N',N'*- tetrakis(3-hydroxypropyl)propanediamine hydrobromide ($3d \cdot 2HBr$) (943 mg, 2.01 mmol) and thionyl chloride (1.15 mL, 16 mmol) in dichloromethane (30 mL) was refluxed for overnight under N₂. The resultant solution was cooled to r.t. and washed with 6*N* NaOH_{aq}. The organic layer was dried and evaporated to give compound 4d as orange oil (751 mg, 1.97 mmol, 98%).

¹H NMR (CDCl₃): δ (ppm) 3.60 (t, *J* = 6.3 Hz, 8H), 2.54 (t, *J* = 6.6 Hz, 8H), 2.39 (t, *J* = 7.2 Hz, 4H), 1.88 (quint, *J* = 6.4 Hz, 8H), 1.60 (m, 2H).

¹³C NMR (CDCl₃): $\Box \delta$ (ppm) 48.5, 46.9, 43.2, 32.9, 30.3.

Anal. Calcd for C₁₅H_{30.5}Cl₄N₂O_{0.25} (**4d**·0.25H₂O): C, 46.83; H, 7.99; N, 7.28. Found: C, 46.96; H, 7.94; N, 7.11.

N,N,N',N'-Tetrakis(2-(8-quinolyloxy)ethyl)ethylenediamine (8-TQOEEN, 2a). To an agitated mixture of 8-quinolinol (2.18 g, 14.8 mmol) and powdered potassium hydroxide (830 mg, 14.8 mmol) in dry ethanol (30 mL) was added *N,N,N',N'*-tetrakis(2-chloroethyl)ethylenediamine (4a) (460 mg, 1.48 mmol) in 3 mL of ethanol. The resulting reaction mixture was refluxed overnight under N₂, cooled to room temperature and the solvent was evaporated. The residue was extracted with CHCl₃/water and the organic layer was washed with 3N NaOH, dried and evaporated. The residue was purified by column chromatography (alumina, CHCl₃/CH₃OH 99.5/0.5, $R_f = 0.35$) to give compound 2a as a yellow oil (226 mg, 0.30 mmol, 20%).

¹H NMR (CDCl₃): δ (ppm) 8.91 (dd, *J* = 4.3, 1.8 Hz, 4 H), 8.14 (dd, *J* = 8.2, 1.5 Hz, 4 H), 7.40-7.45 (m, 12 H), 7.06 (dd, *J* = 7.3, 1.5 Hz, 4 H), 4.34 (t, *J* = 5.8 Hz, 8 H), 3.05 (t, *J* = 6.0 Hz, 8 H), 2.76 (s, 4 H).

¹³C NMR (CDCl₃): δ (ppm) 154.0, 148.6, 139.5, 136.0, 129.3, 126.5, 121.6, 119.5, 64.2, 56.8, 52.5.

HRMS (ESI-MS) *m/z*: [M + Na]⁺ Calcd for C₄₆H₄₄N₆O₄Na 767.3322; Found 767.3434.

N,N,N',N'-Tetrakis(3-(8-quinolyloxy)propyl)ethylenediamine (8-TQOPEN, 2b). To an agitated mixture of 8-quinolinol (1.88 g, 13.0 mmol) and powdered potassium hydroxide (788 mg, 14.0 mmol) in dry ethanol (30 mL) was added *N,N,N',N'*-tetrakis(3-chloropropyl)ethylenediamine (4b) (397 mg, 1.08 mmol) in 3 mL of ethanol. The resulting reaction mixture was refluxed overnight under N₂, cooled to room temperature and the solvent was evaporated. The residue was extracted with CHCl₃/water and the organic layer was washed with 3N NaOH, dried and evaporated. The residue was purified by column

chromatography (alumina, CHCl₃/CH₃OH 99.5/0.5, $R_f = 0.28$) to give a yellow oil. This material was dissolved in small portions of acetonitrile and conc. hydrochloric acid was added to induce precipitation. After filtration, the obtained hydrochloride salt was dissolved in water and 6N NaOH was added to adjust the pH >12. The product was extracted into chloroform, dried and evaporated to give compound **2b** as a yellow oil (130 mg, 0.162 mmol, 15%).

¹H NMR (CDCl₃): δ (ppm) 8.89 (dd, *J* = 4.3, 1.5 Hz, 4 H), 8.05 (dd, *J* = 8.5, 1.5 Hz, 4 H), 7.27-7.38 (m, 12 H), 6.87 (dd, *J* = 7.3, 1.5 Hz, 4 H), 4.06 (t, *J* = 6.6 Hz, 8 H), 2.55 (t, *J* = 6.6 Hz, 8 H), 2.43 (s, 4 H), 1.88 (quint, *J* = 6.5 Hz, 8 H).

¹³C NMR (CDCl₃): δ (ppm) 154.5, 148.9, 140.1, 135.5, 129.2, 126.5, 121.3, 119.1, 108.5, 66.7, 52.6, 50.7, 26.9.

HRMS (ESI-MS) m/z: [M + Na]⁺ Calcd for C₅₀H₅₂N₆O₄Na 823.3948; Found 823.3985.

Anal. Calcd for C₅₀H₅₇Cl₂N₆O_{5.5} (**2b**·2HCl·1.5H₂O): C, 66.66; H, 6.38; N, 9.33. Found: C, 66.77; H, 5.99; N, 9.23.

N,N,N',N'-Tetrakis(2-(8-quinolyloxy)ethyl)propanediamine (8-TQOEPN, 2c). To an agitated mixture of 8-quinolinol (1.53 g, 10.6 mmol) and powdered potassium hydroxide (592 mg, 10.6 mmol) in dry ethanol (30 mL) was added *N,N,N',N'*-tetrakis(2-chloroethyl)propanediamine (4c) (285 mg, 1.06 mmol) in 3 mL of ethanol. The resulting reaction mixture was refluxed overnight under N₂, cooled to room temperature and the solvent was evaporated. The residue was extracted with CHCl₃/water and the organic layer was washed with 3N NaOH, dried and evaporated. The residue was purified by column chromatography (alumina, CHCl₃/CH₃OH 99.5/0.5, $R_f = 0.3$) to give compound **2c** as a yellow oil (88 mg, 0.12 mmol, 9%).

¹H NMR (CDCl₃): δ (ppm) 8.88 (dd, *J* = 4.3, 1.8 Hz, 4 H), 8.06 (dd, *J* = 8.2, 1.5 Hz, 4 H), 7.29-7.40 (m, 12 H), 7.02 (dd, *J* = 6.4, 2.7 Hz, 4 H), 4.34 (t, *J* = 6.6 Hz, 8 H), 4.34 (t, *J* = 6.7 Hz, 8 H), 3.24 (t, *J* = 6.6 Hz, 8 H), 2.82 (t, *J* = 7.2 Hz, 8 H), 2.61 (s, 4 H), 1.85 (br., 2 H). ¹³C NMR (CDCl₃): δ (ppm) 154.2, 148.9, 140.0, 135.5, 129.2, 126.5, 121.3, 119.3, 108.7, 77.2, 67.2, 53.6, 25.4.

HRMS (ESI-MS) m/z: [M + Na]⁺ Calcd for C₄₇H₄₆N₆O₄Na 781.3398; Found 781.3478.

Anal. Calcd for C₄₇H₅₀N₆O₆ (**2c**·2H₂O): C, 71.01; H, 6.34; N, 10.57. Found: C, 70.77; H, 6.35; N, 10.88.

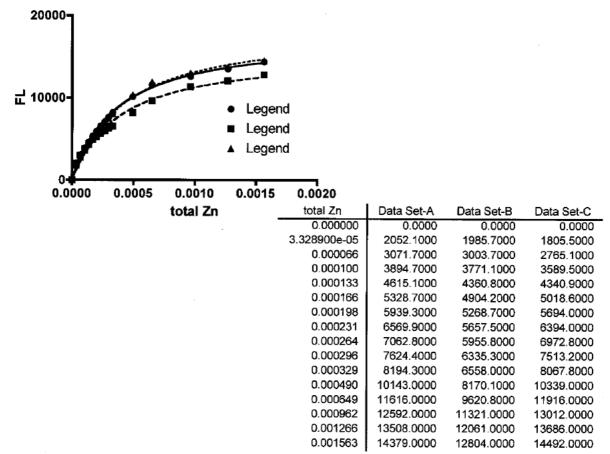
N,N,N',N'-**Tetrakis(3-(8-quinolyloxy)propyl)propanediamine (8-TQOPPN, 2d).** To an agitated mixture of 8-quinolinol (2.67 g, 18.4 mmol) and powdered potassium hydroxide (1.03 g, 18.4 mmol) in dry ethanol (30 mL) was added *N,N,N',N'*-tetrakis(3-chloropropyl)propanediamine (**4d**) (700 mg, 1.84 mmol) in 3 mL of ethanol. The resulting reaction mixture was refluxed overnight under N₂. The resultant solution was cooled to room temperature and the solvent was evaporated. The residue was extracted with CHCl₃/water and the organic layer was washed with 3N NaOH, dried and evaporated. The residue was purified by column chromatography (alumina, AcOEt/MeOH 98/2, $R_f = 0.6$) to give yellow oil. This material was dissolved in a small portion of ethanol and conc. hydrochloric acid was added to induce precipitation. After filtration, the hydrochloride salt was dissolved in water and 6N NaOH was added to adjust the pH >12. The product was extracted into chloroform, dried and evaporated to give compound **2d** as a yellow oil (195 mg, 0.239 mmol, 13%).

¹H NMR (CDCl₃): δ (ppm) 8.90 (dd, *J* = 4.3, 1.8 Hz, 4 H), 8.04 (dd, *J* = 8.2, 1.8 Hz, 4 H), 7.26-7.38 (m, 12 H), 6.89 (dd, *J* = 7.3, 1.5 Hz, 4 H), 4.10 (t, *J* = 6.7 Hz, 8 H), 2.57 (br., 8 H), 2.40 (br., 4 H), 2.06 (quint, *J* = 6.6 Hz, 8 H), 1.54 (br., 2 H).

¹³C NMR (CDCl₃): δ (ppm) 154.5, 148.8, 140.0, 135.5, 129.1, 126.4, 121.2, 119.0, 108.4, 66.9, 52.3, 50.1, 26.8, 24.5.

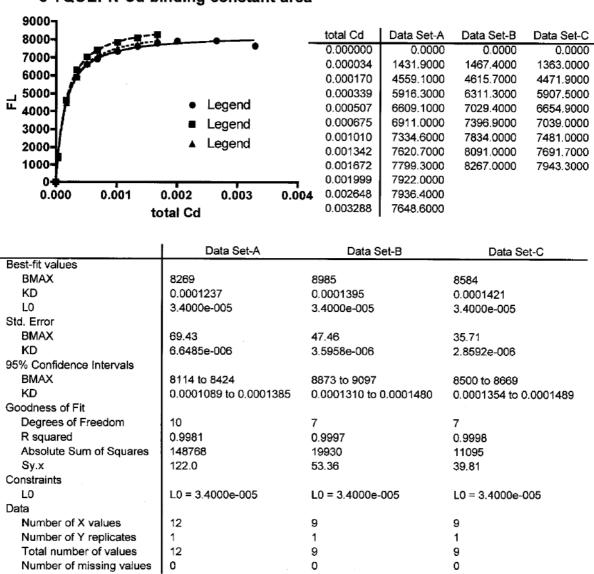
HRMS (ESI-MS) m/z: $[M + H]^+$ Calcd for C₅₁H₅₅N₆O₄ 815.4286; Found 815.4285.

Anal. Calcd for C₅₁H₆₀ClN₂O_{6.5} (**2d**·HCl·2.5H₂O): C, 68.32; H, 6.75; N, 9.37. Found: C, 68.51; H, 6.35; N, 9.26.


Measurements. Measurements for **1b** and **2c** were performed in DMF/HEPES buffer (1:1 (v/v), 50 mM HEPES, 100 mM KCl, pH = 8.0). Measurements for **2a**, **2b** and **2c** were performed in DMF/water (1:1). The reproducibility of all measurements has been confirmed. The values of the quantum yield are from single measurement. The K_d 's are mean values of three independent measurements.

6-MeO-8-TQEN-Cd binding constant-area

	Data Set-A	Data Set-B	Data Set-C
Best-fit values			
BMAX	17334	17881	16417
KD	3.4014e-005	3.2753e-005	3.4861e-005
LO	3.4000e-005	3.4000e-005	3.4000e-005
Std. Error			
BMAX	51.29	72.72	41.43
KD	6.7923e-007	9.1697e-007	5.8621e-007
95% Confidence Intervals			
BMAX	17224 to 17444	17725 to 18037	16328 to 16506
KD	3.2557e-005 to 3.5471e-005	3.0786e-005 to 3.4720e-005	3.3603e-005 to 3.6118e-005
Goodness of Fit			
Degrees of Freedom	14	14	14
R squared	0.9995	0.9990	0.9996
Absolute Sum of Squares	150547	308243	97076
Sy.x	103.7	148.4	83.27
Constraints			
LO	L0 = 3.4000e-005	L0 = 3.4000e-005	L0 = 3.4000e-005
Data			
Number of X values	16	16	16
Number of Y replicates	1	1	1
Total number of values	16	16	16
Number of missing values	0	0	0


Figure S1. Estimation of dissociation constant of **1b** with Cd^{2+} ion.

6-MeO-8-TQEN-Zn	binding of	constant-area
-----------------	------------	---------------

	Data Set-A	Data Set-B	Data Set-C	
Best-fit values			· · · · · · · · · · · · · · · · · · ·	
BMAX	17450	15474	18373	
KD	0.0003465	0.0003665	0.0003935	
LO	3.4000e-005	3.4000e-005	3.4000e-005	
Std. Error				
BMAX	339.0	600.4	377.1	
KD	1.6786e-005	3.4830e-005	1.9338e-005	
95% Confidence Intervals				
BMAX	16723 to 18177	14186 to 16762	17564 to 19182	
KD	0.0003105 to 0.0003825	0.0002918 to 0.0004412	0.0003520 to 0.0004350	
Goodness of Fit				
Degrees of Freedom	14	14	14	
R squared	0.9962	0.9849	0.9963	
Absolute Sum of Squares	1.0281e+006	2.9920e+006	1.0690e+006	
Sy.x	271.0	462.3	276.3	
Constraints				
LO	L0 = 3.4000e-005	L0 = 3.4000e-005	L0 = 3.4000e-005	
Data				
Number of X values	16	16	16	
Number of Y replicates	1	1	1	
Total number of values	16	16	16	
Number of missing values	0	0	0	

Figure S2. Estimation of dissociation constant of **1b** with Zn^{2+} ion.

8-TQOEPN-Cd binding constant-area

Figure S3. Estimation of dissociation constant of 2c with Cd²⁺ ion.

8-TQOEPN-Zn binding constant-area						
5000-						
	_	•				
4000-		A D T				
3000-		_				
3000-	-	• • • • • • •				
		 Legend 				
2000- 📕		Legend				
		Legend				
1000-						
0.000 0.001		0.000				
0.000 0.001		0.003	0.004			
	total Zn	total Zn	Data Set-A	Data Set-B	Data Set-C	
	-	0.000000	0.0000	0.0000		
		0.000034	329.2800	293.8100	407.4800	
		0.000169	1317.0000	1128.7000	1037.5000	
		0.000335	2248.0000	2023.2000	1968.9000	
		0.000500	2912.0000	2594.7000	2567.7000	
		0.000662	3205.9000	2984.1000		
		0.000980	3388.4000	3152.4000	3234.8000	
		0.001290	3590.1000	3480.1000		
		0.001592	3829.8000	3629.4000	3592.7000	
		0.001886	4009.8000	3783.4000	3696.3000	
		0.002453	4326.3000	3970.5000	3946.0000	
		0.002993	4403.6000	4041.6000	3938.5000	
P-1/t-1	Data Set	t-A	Data Set-B	}	Data Set-C	
Best-fit values BMAX	4877		1621	454	0	
KD	0.0003781		.0004089	454	9 004056	
LO	3.4000e-005		3.4000e-005		000e-005	
Std. Error				0.1		
BMAX	109.9	8	34.29	106	3.8	
KD	3.1995e-005	2	2.7046e-005	3.4	659e-005	
95% Confidence Intervals						
BMAX	4633 to 5122		1433 to 4808		1 to 4787	
KD	0.0003069 to 0.	.0004494 (0.0003487 to 0.00	004692 0.0	003283 to 0.0004828	
Goodness of Fit	10		10	10		
Degrees of Freedom R squared	10 0.9945		10	10		
Absolute Sum of Squares	137459).9967 73971	0.9	9944	
Sy.x	117.2		36.01	109		
Constraints				,05		
LO	L0 = 3.4000e-0	05 ι	0 = 3.4000e-005	LO:	= 3.4000e-005	
Data						
Number of X values	12	1	12	12		
Number of Y replicates	1		I	1		
Total number of values	12		2	12		
Number of missing values	0	()	0		

Figure S4. Estimation of dissociation constant of 2c with Zn^{2+} ion.

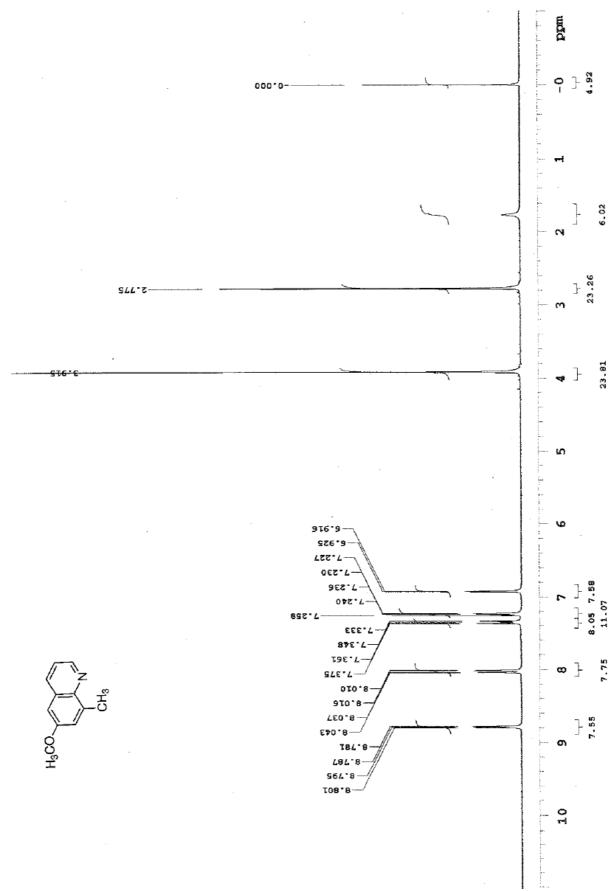


Figure S5. ¹H NMR spectrum of 6-methoxy-8-methylquinoline in CDCl₃.

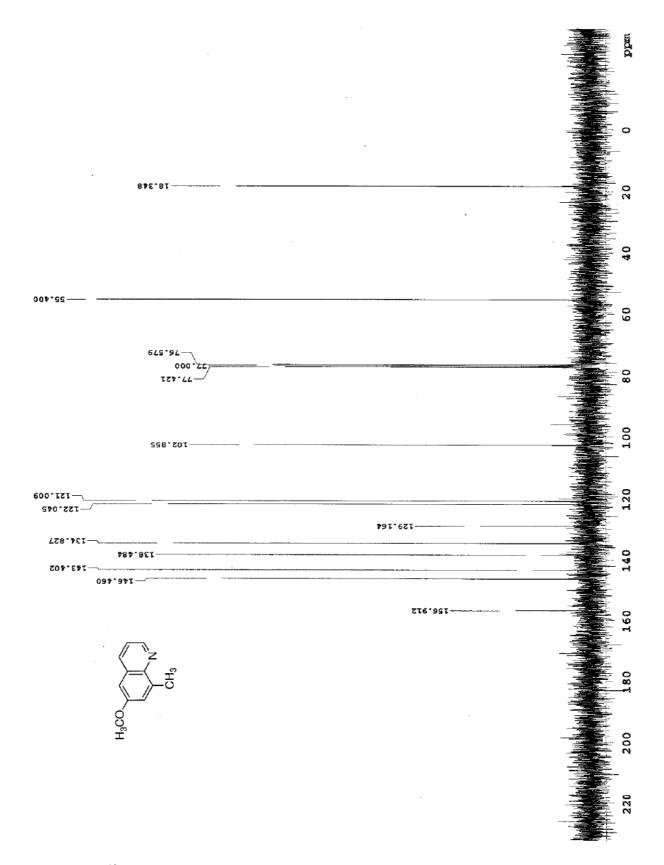


Figure S6. ¹³C NMR spectrum of 6-methoxy-8-methylquinoline in CDCl₃.

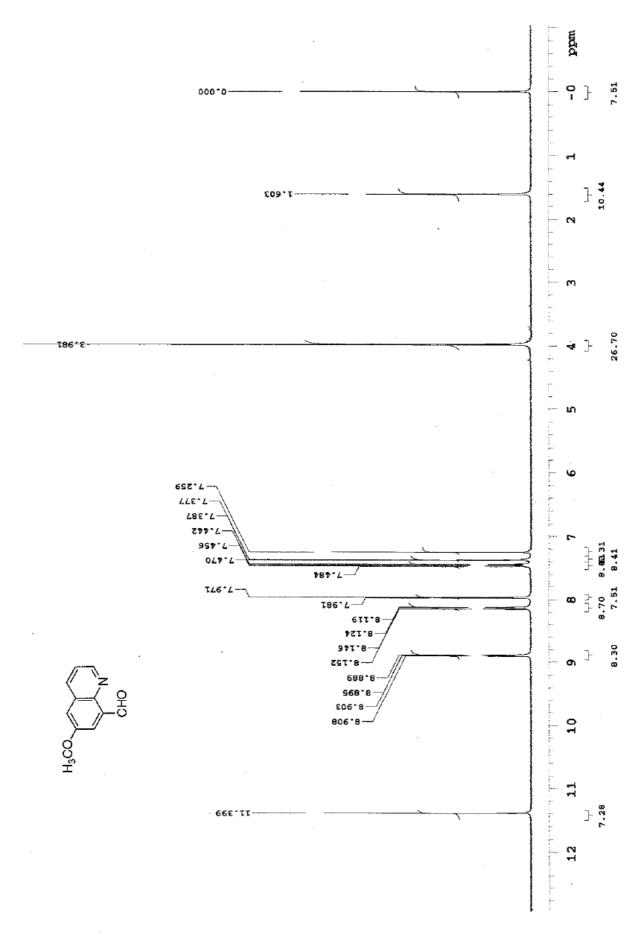


Figure S7. ¹H NMR spectrum of 6-methoxyquinoline-8-carboaldehyde in CDCl₃.

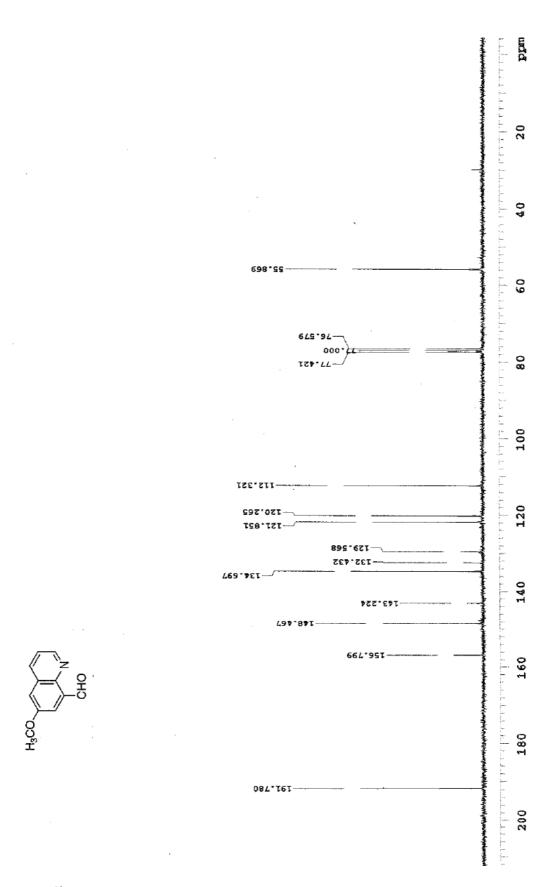


Figure S8. ¹³C NMR spectrum of 6-methoxyquinoline-8-carboaldehyde in CDCl₃.

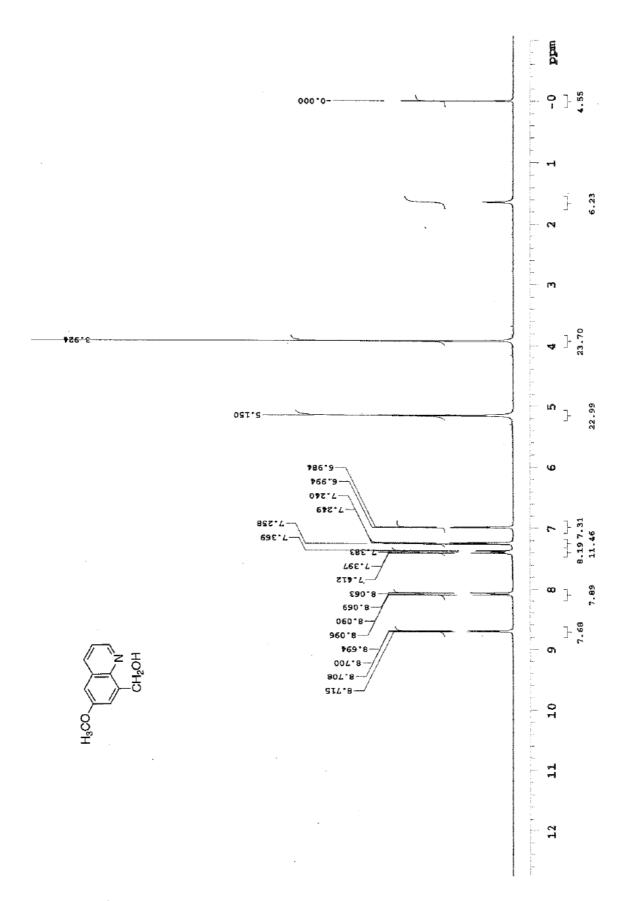


Figure S9. ¹H NMR spectrum of 8-hydroxymethyl-6-methoxyquinoline in CDCl₃.

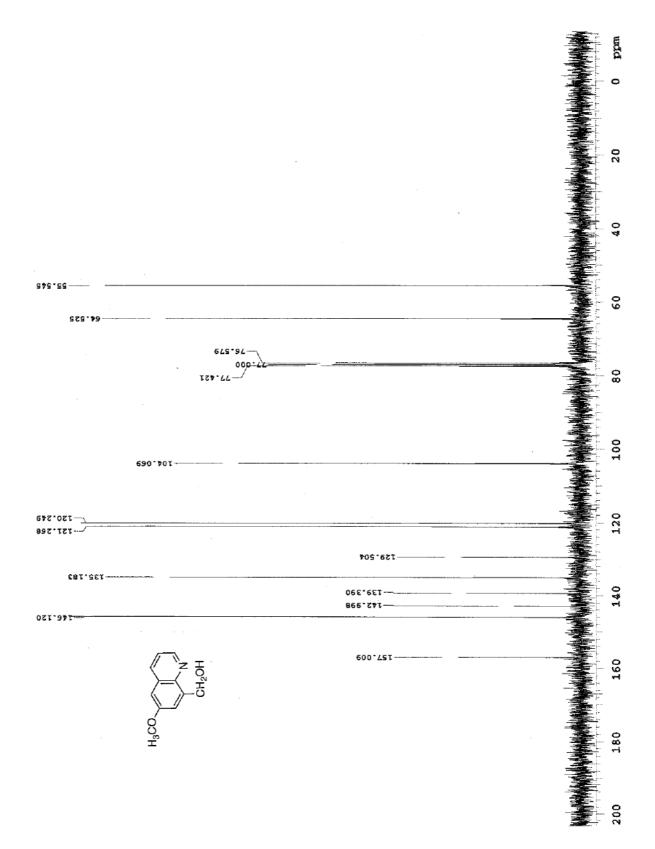


Figure S10. ¹³C NMR spectrum of 8-hydroxymethyl-6-methoxyquinoline in CDCl₃.

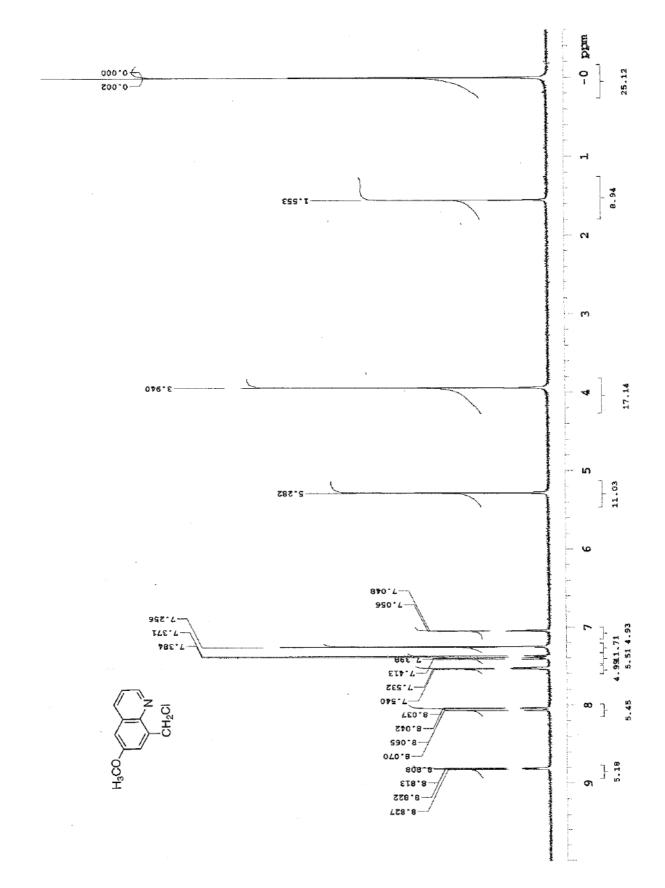


Figure S11. ¹H NMR spectrum of 8-chloromethyl-6-methoxyquinoline in CDCl₃.

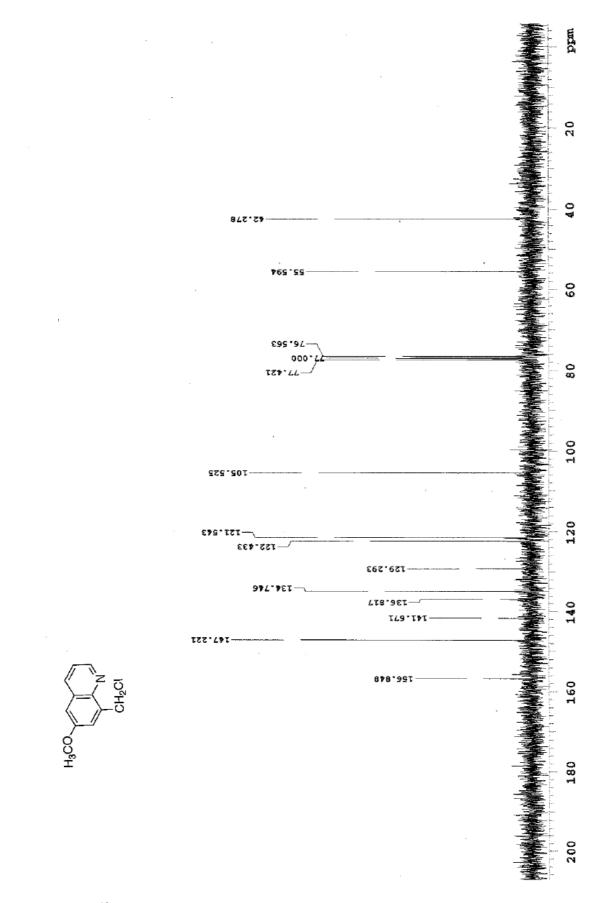


Figure S12. ¹³C NMR spectrum of 8-chloromethyl-6-methoxyquinoline in CDCl₃.

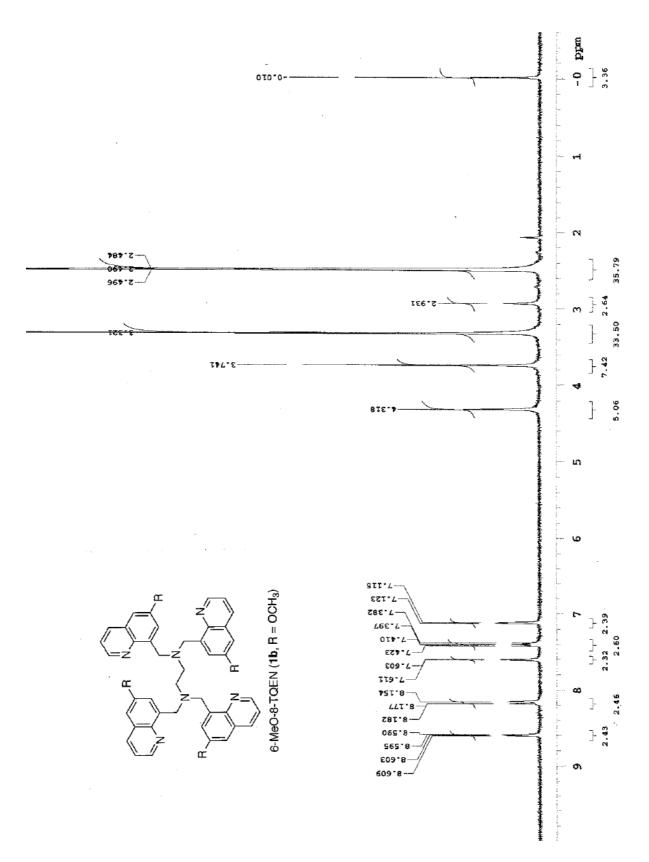


Figure S13. ¹H NMR spectrum of 1b in DMSO-*d*₆.

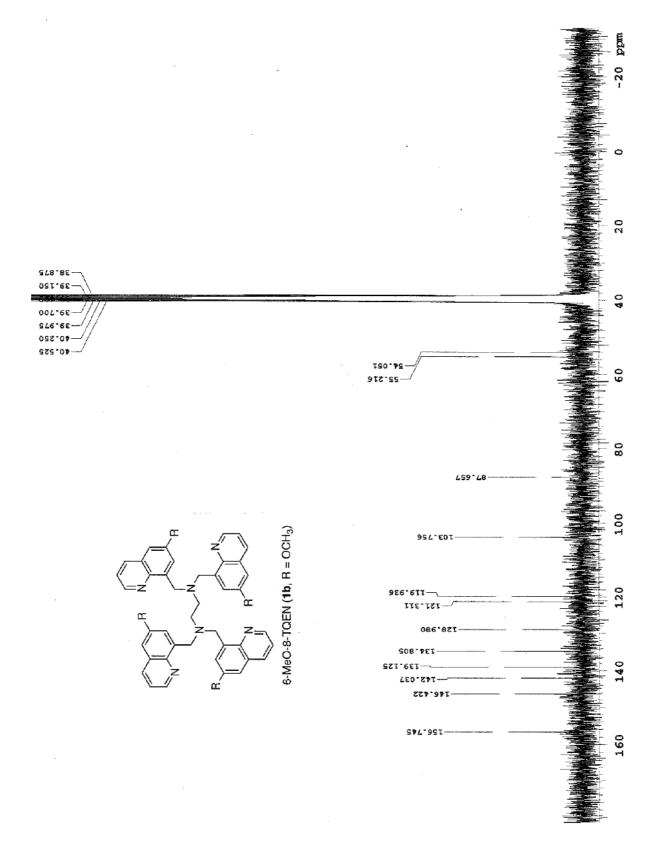
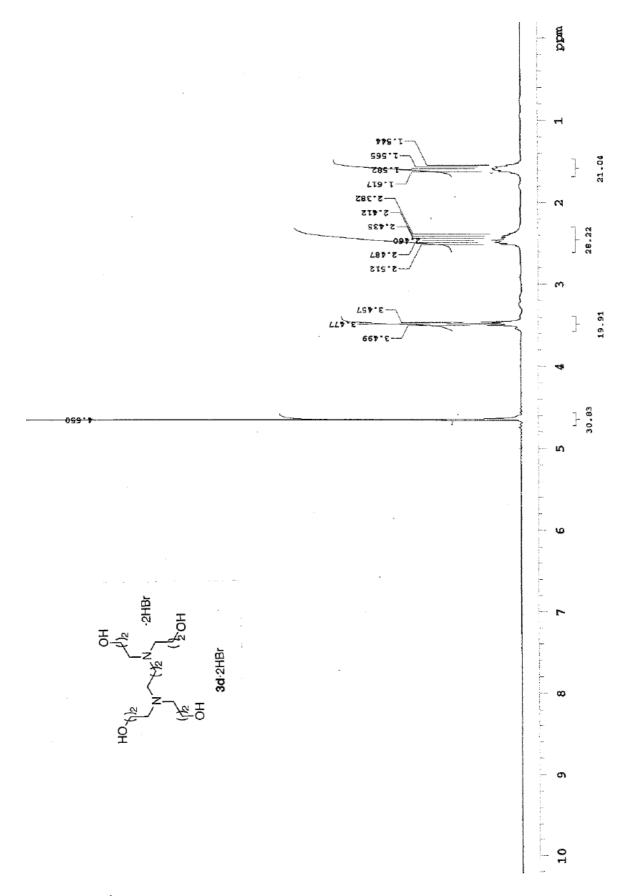



Figure S14. ¹³C NMR spectrum of 1b in DMSO- d_6 .

Figure S15. ¹H NMR spectrum of $3d \cdot 2HBr$ in D_2O .

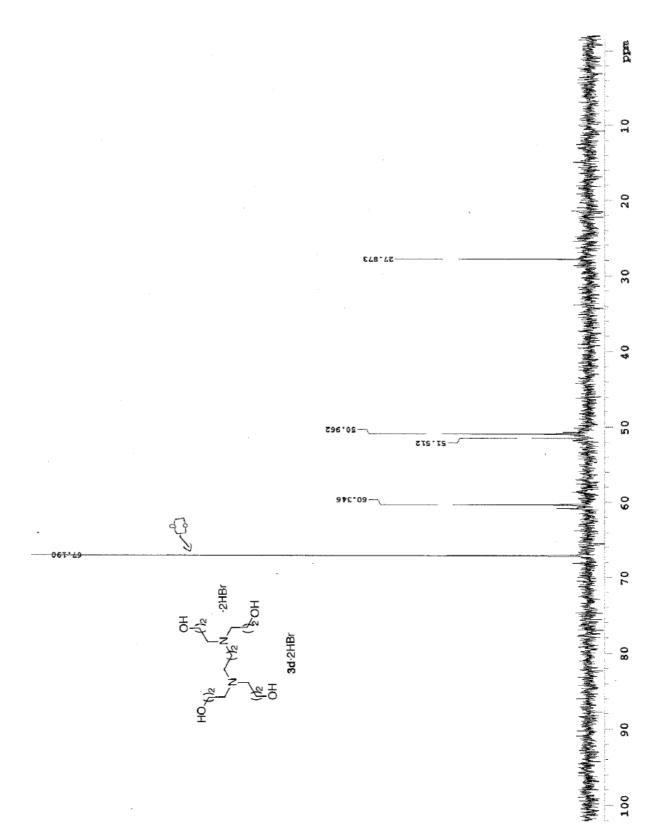


Figure S16. ¹³C NMR spectrum of $3d \cdot 2HBr$ in D_2O .

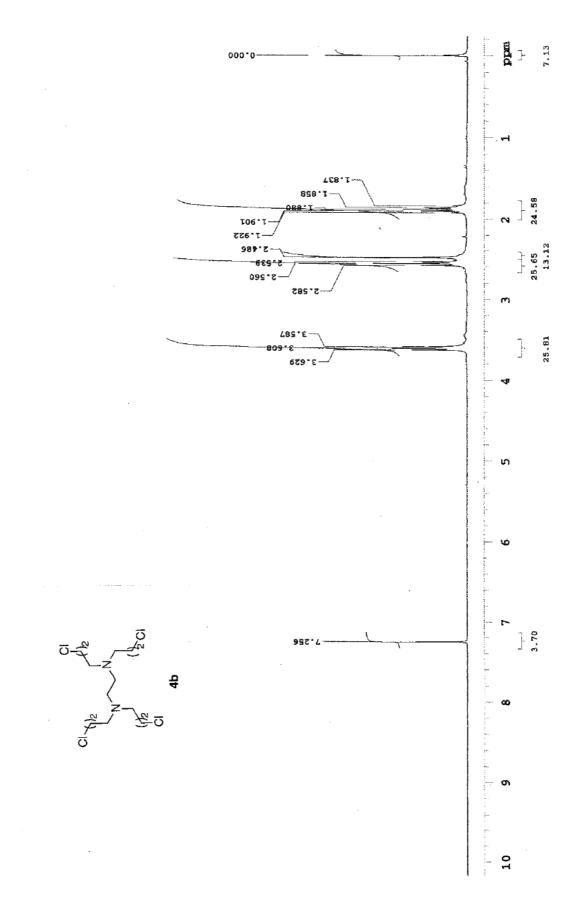


Figure S17. ¹H NMR spectrum of 4b in CDCl₃.

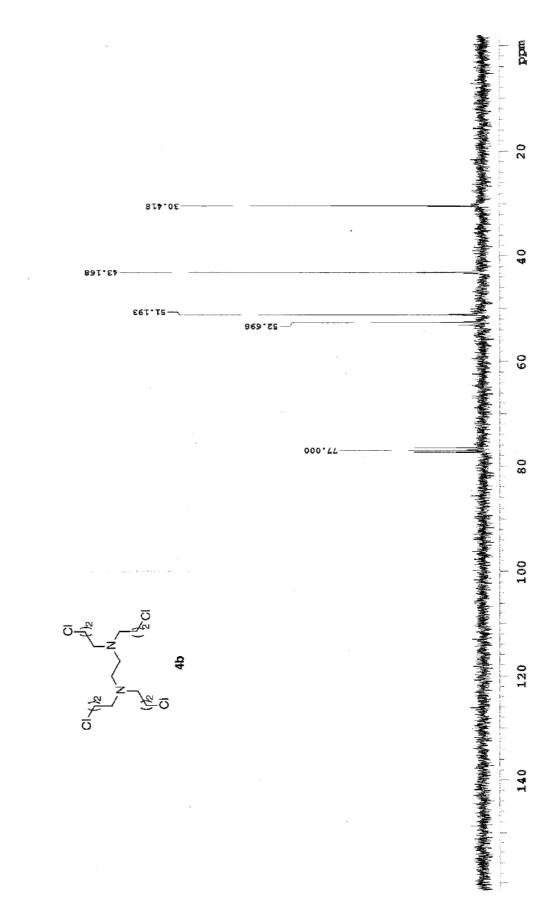


Figure S18. ¹³C NMR spectrum of 4b in CDCl₃.

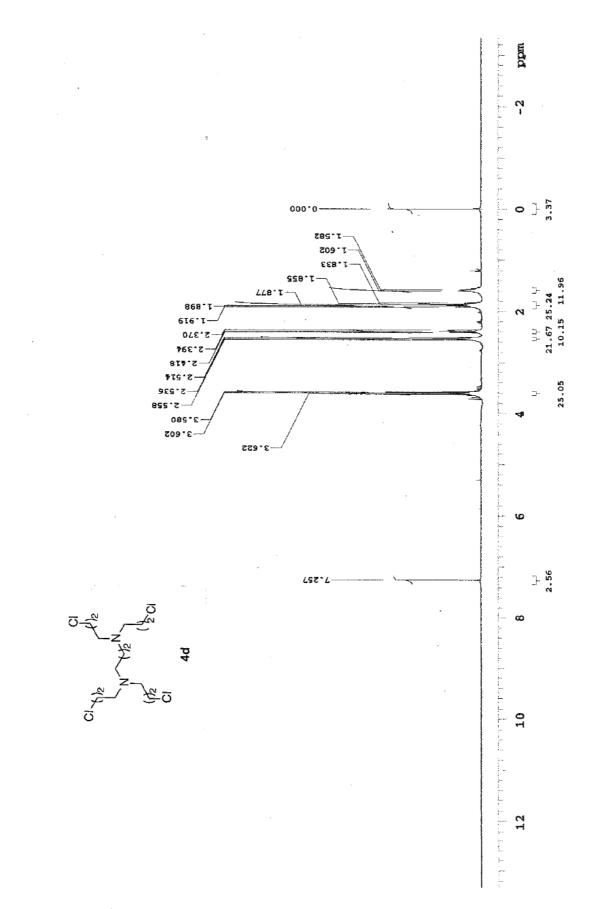


Figure S19. ¹H NMR spectrum of 4d in CDCl₃.

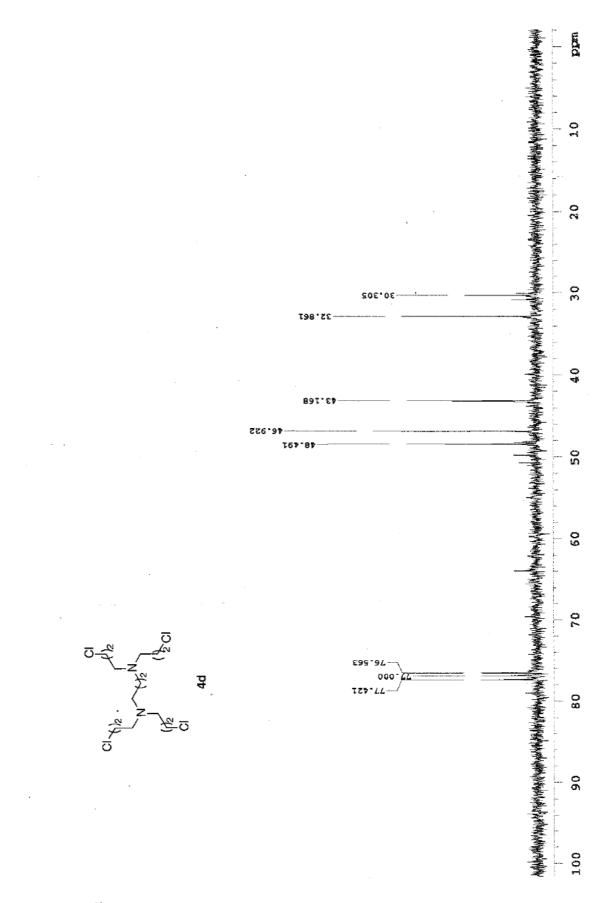


Figure S20. ¹³C NMR spectrum of 4d in CDCl₃.

12.70 udd]-000 ч 26.89 -3°367 T 797.5 12.56 3.028 7.64 8**7**0*8 m 890°E 125.1 8.09 988* 995.4 in vo T#0.7-490-4-990.7 170.7 12.32 3.79 7.99 7227 ┵╻┍ 007-1 907.7 119.7 527-7 854.7 8-TQOEEN (2a) 80 4.00 677'4 7 259.7 677.8 921-8 971.8 **4.01** TST-8 თ 968'8 206.8 016.8 916.8 10 the second se

Figure S21. ¹H NMR spectrum of 8-TQOEEN (2a) in CDCl₃.

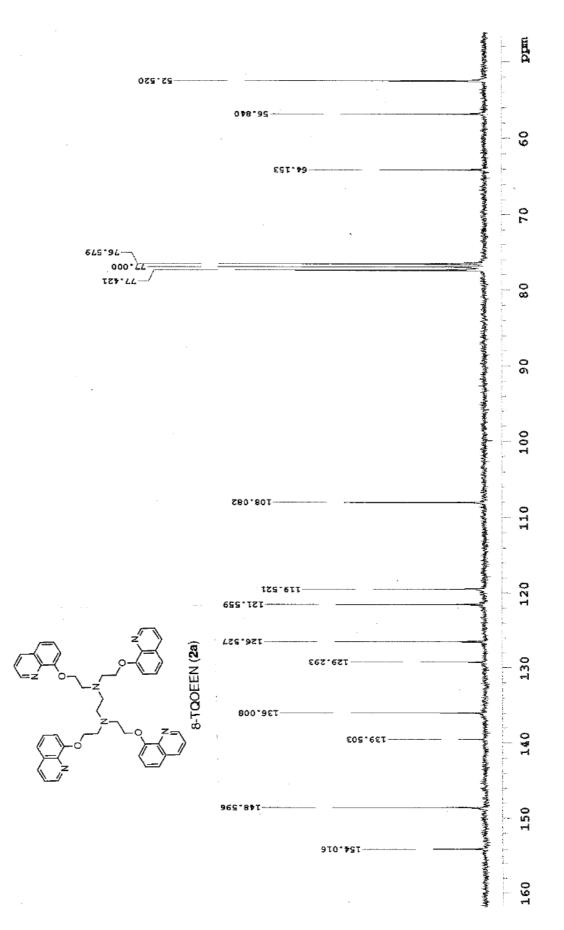


Figure S22. ¹³C NMR spectrum of 8-TQOEEN (2a) in CDCl₃.

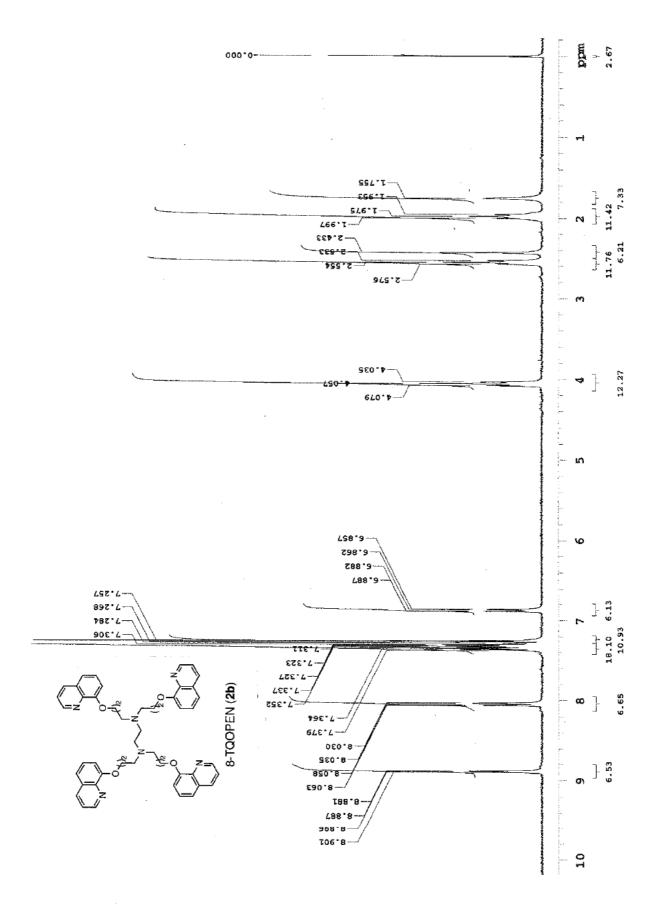


Figure S23. ¹H NMR spectrum of 8-TQOPEN (2b) in CDCl₃.

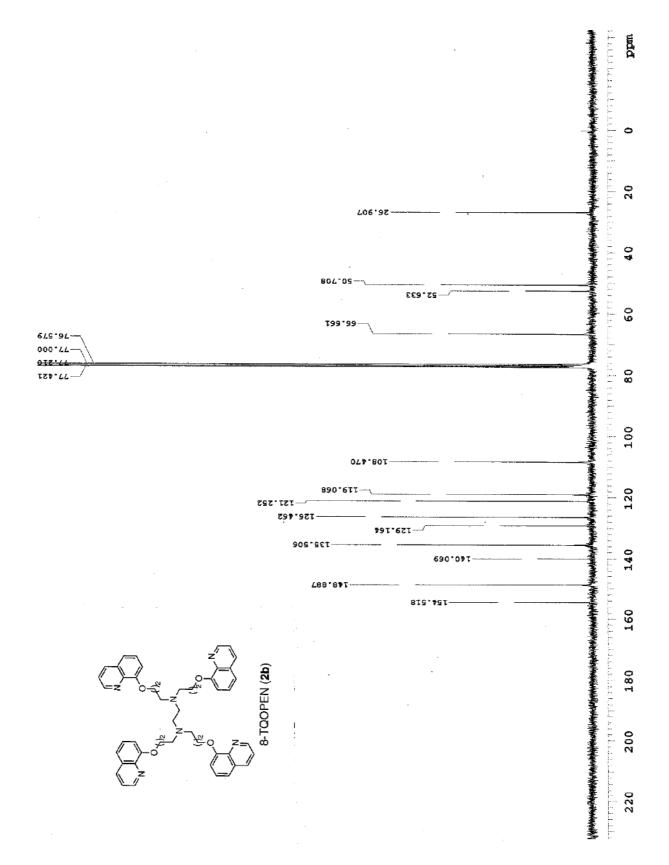


Figure S24. ¹³C NMR spectrum of 8-TQOPEN (2b) in CDCl₃.

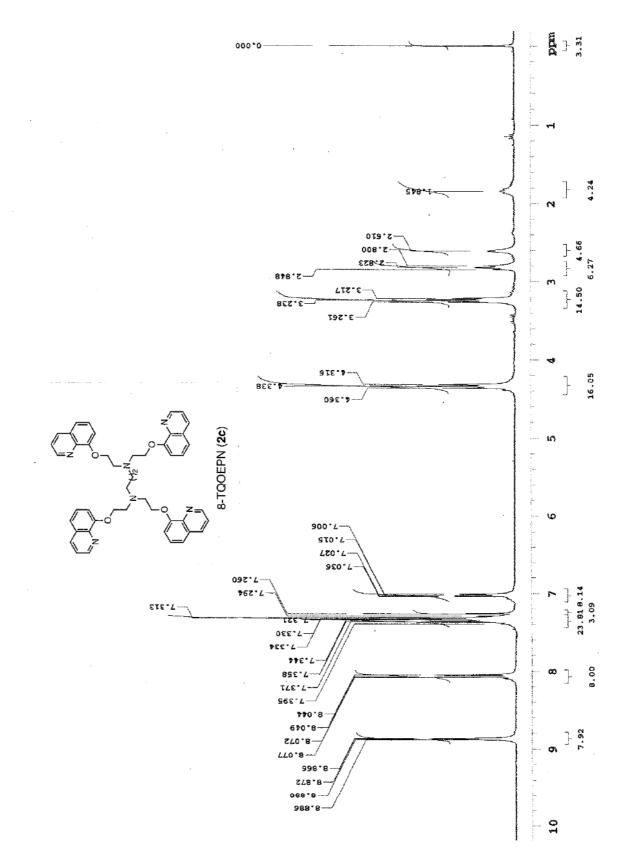


Figure S25. ¹H NMR spectrum of 8-TQOEPN (2c) in CDCl₃.

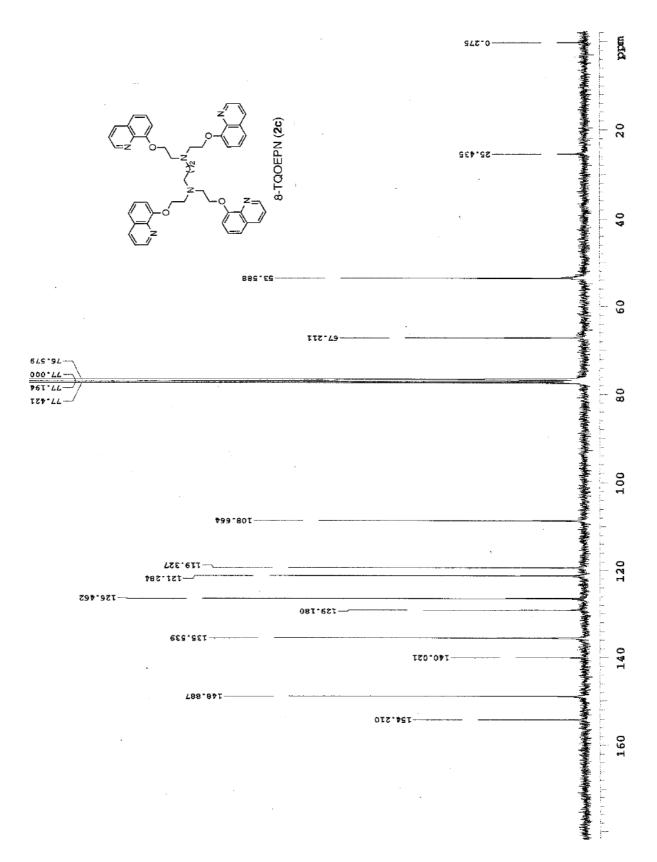


Figure S26. ¹³C NMR spectrum of 8-TQOEPN (2c) in CDCl₃.

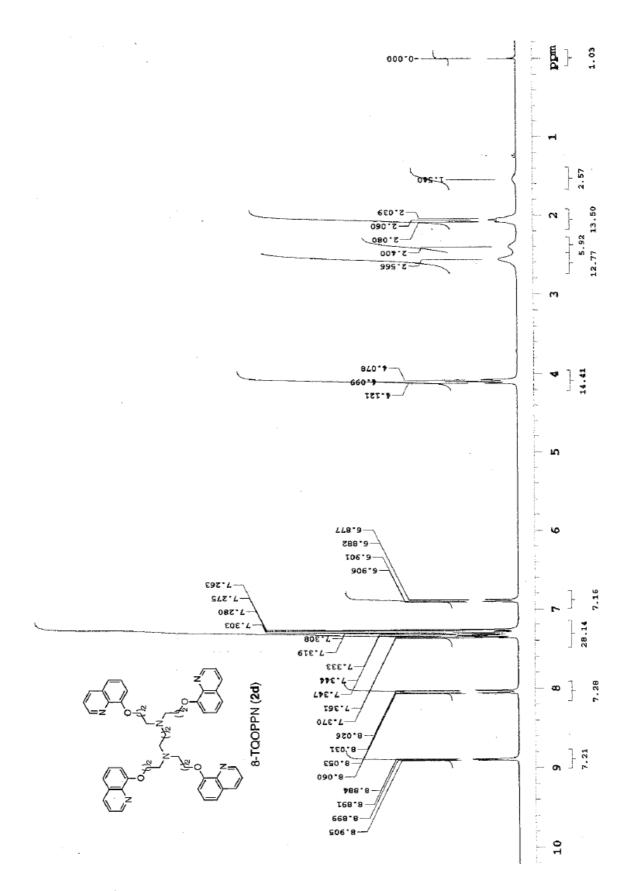


Figure S27. ¹H NMR spectrum of 8-TQOPPN (2d) in CDCl₃.

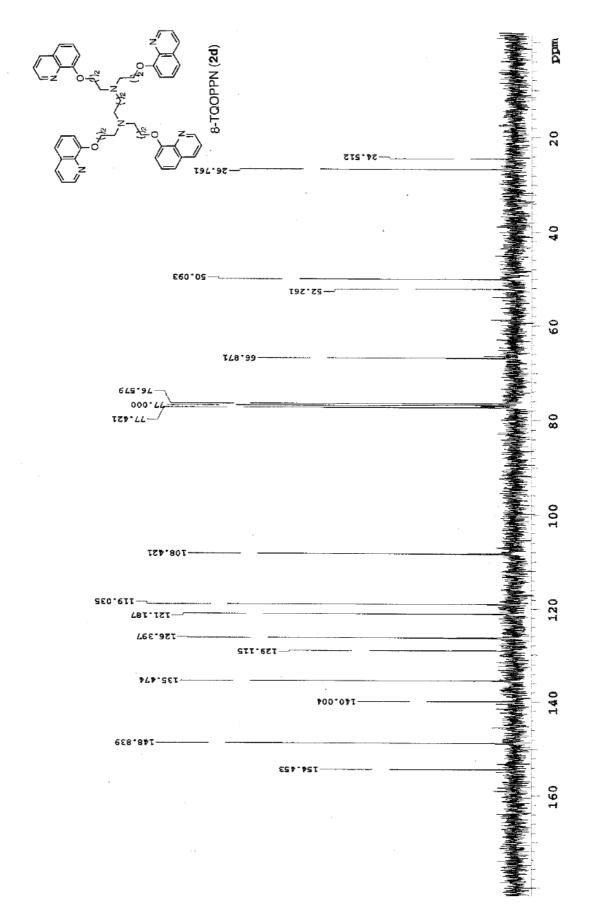


Figure S28. ¹³C NMR spectrum of 8-TQOPPN (2d) in CDCl₃.