Supplementary Information for

Topotactic Conversion-Derived Li₄Ti₅O₁₂-Rutile TiO₂ Hybrid Nanowire Array for High-Performance Lithium Ion Full Cell

Junling Guo and Jinping Liu*

Figures:

Fig. S1. SEM images of pristine RTO nanowire array at different resolutions, showing the smooth surface of nanowires.

Fig. S2. TEM image of the optimized LTO-RTO hybrid nanowires. The particulate-shaped LTO on RTO nanowire surface can be clearly seen.

^{*} Institute of Nanoscience and Nanotechnology, Department of Physics, Central China Normal University, Wuhan 430079, Hubei, P.R. China. Email: <u>liujp@phy.ccnu.edu.cn</u>

Fig. S3. SEM images of the 3:1 LTO-RTO sample after 400 cycles at various resolutions.

Fig. S4. Cycling performance of the full cell at constant current of 1750 mA g^{-1} .

Fig. S5. Cell capacities at progressively increased current densities. The mass of the full cell was calculated by adding those of the total active materials, total current collectors and separator.

Fig. S6. Cell discharge energy density at various current densities.

Tables:

Table S1. The parameter values of typical elements based on the following equivalent circuit.

Sample Parameter	Pristine RTO	1:1 LTO-RTO	3:1 LTO-RTO	5:1 LTO-RTO
$R_{\rm s}~(\Omega)$	3.97	3.07	0.85	2.84
$R_{\rm ct}$ (Ω)	156.6	176.6	414.1	653.3

Table S2. Charge and discharge capacity comparison of different samples at 350 mA g^{-1} .

	Charge capacity (mAh g ⁻¹)			Discharg	ge capacity	$(mAh g^{-1})$
Cycle number Sample (LTO:RTO)	1	100	200	1	100	200
0:1	198.7	73.9	41.7	156.1	73.1	40.6
1:1	170.5	95.8	67.3	136.9	100.8	67.3
3:1	165	136.8	113.8	161.5	135.5	109.1
5:1	99.4	85.2	94.	142.1	84.7	91.9

Sample(LTO:RTO)	0:1	1:1	3:1	5:1
Coulombic efficiency	78.5%	80.0%	97.5%	98.0%

Table S3. Coulombic efficiency in the first cycle of different samples at 350 mA g^{-1} .

Table S4. Comparison of the electrochemical performance of different LTO-based electrodes.

 Note that the capacity values of reported LTO electrodes were collected from the rate capacity figures.

Mariala	Carbon involved?	C				
Morphology		175 mA g ⁻¹	350 mA g^{-1}	875 mA g ⁻¹	1750 mA g ⁻¹	- Cycle number
Porous microsphere ^[58]	Carbon coating	165	Not available	135	105	100 (at 175 mA g ⁻¹)
Porous microsphere ^[22]	Carbon coating	165	Not available	160	159	Not available
Nanoparticles in mesoporous carbon ^[18]	Carbon coating	144	135	125	115	500 (at 1750 mA g ⁻¹)
Hollow sphere ^[60]	Carbon black	175	150	128	115	200 (at 350 mA g ⁻¹)
Nanoparticles in mesoporous carbon ^[59]	Carbon coating	145	140	130	121.3	1000 (at 3500 mA g ⁻¹)
LTO nanowire ^[40]	No (but hydrogenated)	165	Not available	160	150	100 (at 875 mA g ⁻¹)
LTO nanowire ^[40]	No	150	Not available	125	105	100 (at 875 mA g ⁻¹)
LTO-RTO nanowire array (our work)	No 181		165	137	122	400 (at 1750 mA g^{-1});
		181				>2000 (at 1750 mA g ⁻¹) for full cell

Current density (mA g ⁻¹)	45	175	350	875	1750
Energy efficiency (%)	98.7	97.5	94.7	91.4	78.1

 Table S5. Initial cell energy efficiency at various current densities.