Supporting Information

One-flask synthesis of 1,3,5-trisubstituted 1,2,4-triazoles from nitriles and hydrazonoyl chlorides via 1,3-dipolar cycloaddition \dagger

Li-Ya Wang, ${ }^{\text {a,b }}$ Henry J. Tsai, ${ }^{\text {c }}$ Hui-Yi Lin, ${ }^{\text {d }}$ Kimiyoshi Kaneko, ${ }^{\text {e }}$ Fen-Ying Cheng, ${ }^{\text {f }}$ Hsin-Siao Shih, ${ }^{\text {f }}$ Fung Fuh Wong, ${ }^{*}$ and Jiann-Jyh Huang ${ }^{\text {ff }}$
${ }^{\mathrm{a}}$ Graduate Institute of Pharmaceutical Chemistry, China Medical University, No. 91, Hsueh-Shih Rd., Taichung 40402, Taiwan
${ }^{\mathrm{b}}$ The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University, No. 91, Hsueh-Shih Rd., Taichung 40402, Taiwan
${ }^{\text {c Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, }}$ Taiwan
${ }^{\mathrm{d}}$ School of Pharmacy, China Medical University, No. 91, Hsueh-Shih Rd., Taichung 40402, Taiwan
${ }^{\mathrm{e}}$ Department of Medico Pharmaceutical Science, Nihon Pharmaceutical University, 10281, Komuro, Inamachi, Kita-Adachigun, Saitama, Japan
${ }^{\mathrm{f}}$ Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City 60004, Taiwan
*Corresponding Author. Tel.: +886 5271 7959; Fax: +886 5271 7901; E-mail address: lukehuang@mail.ncyu.edu.tw (J.-J. Huang)
Table of Contents: Page
Experimental Section S2
References S7

Experimental Section

All chemicals were reagent grade and used as purchased. All reactions were carried out under argon or nitrogen atmosphere and monitored by TLC. Flash column chromatography was carried out on silica gel (230-400 mesh). Analytical thin-layer chromatography (TLC) was performed on precoated plates (silica gel 60 F-254) purchased from Merck Inc. Mixtures of ethyl acetate and hexanes were used as eluants. Infrared (IR) spectra were measured on a Bomem Michelson Series FT-IR spectrometer. The wavenumbers reported are referenced to the polystyrene absorption at $1601 \mathrm{~cm}^{-1}$. Absorption intensities are recorded by the following abbreviations: s , strong; m, medium; w, weak. Proton NMR spectra were obtained on a Bruker (200 MHz or 500 MHz) spectrometer by use of CDCl_{3} as solvent. Carbon-13 NMR spectra were obtained on a Bruker (50 MHz or 125 MHz) spectrometer by used of CDCl_{3} as solvent. Carbon- 13 chemical shifts are referenced to the center of the CDCl_{3} triplet (δ 77.0 ppm). Multiplicities are recorded by the following abbreviations: s , singlet; d , doublet; t, triplet; q, quartet; m, multiplet; J, coupling constant (Hz). ESI-MS spectra were obtained from an Applied Biosystems API 300 mass spectrometer. Highresolution mass spectra were obtained from a JEOL JMS-HX110 mass spectrometer. Elemental analyses were carried out on a Heraeus CHN-O RAPID element analyzer.

Standard Procedure for the One-Flask Synthesis of 1,3,5-Trisubstituted 1,2,4Triazoles 4a-s and 8a-b. Nitriles 5a-i ($1.0 \mathrm{mmol}, 1.0$ equiv) was mixed with ethanol $(1.0 \mathrm{~mL})$ and dichloromethane $(2.0 \mathrm{~mL})$. The solution was slowly saturated with $\mathrm{HCl}(\mathrm{g})$ in a rate of ~ 1 bubble/min for $6.0 \mathrm{~h} .{ }^{1}$ After the corresponding imidate ethyl ester hydrochloride was formed, the reaction mixture was concentrated under reduced pressure. The residue was added with a toluene solution containing hydrazonoyl hydrochlorides (3a-i or $\mathbf{7 a}-\mathbf{b}, 1.0 \mathrm{mmol}, 1.0$ equiv) and triethylamine ($3.0 \mathrm{mmol}, 3.0$
equiv), and heated at reflux for 5.0 h . The reaction mixture was concentrated, added with water $(10 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The organic layer was washed with saturated NaHCO_{3}, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give the corresponding 1,3,5-trisubstituted 1,2,4-triazoles 4a-s and 8a-b in 56-98\% yields. The spectroscopic data of compounds $\mathbf{4 a}-\mathbf{c}, \mathbf{4 e}-\mathbf{h}$, and $\mathbf{4 s}$ were consistent with our previously reported. ${ }^{2}$

1-(4-Methylphenyl)-3-methoxycarbonyl-5-methyl-1,2,4-triazole (4d). Yield: 56\%; yellow liquid; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.29(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}), 7.32(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 13.08,21.17,52.69,124.69(2 \times \mathrm{CH}), 130.03(2 \times \mathrm{CH})$, 134.22, 139.83, 153.36, 154.03, 160.38; IR (diffuse reflectance) 3441 (m), 2924 (m), 2353 (m), 1735 ($\mathrm{s}, \mathrm{C}=\mathrm{O}), 1666$ (m), 1381 (m), 1219 (m), 1141 (m), 1026 (m), 825 (m) cm^{-1}; MS (ESI) $m / z 232(\mathrm{M}+\mathrm{H})^{+}$; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$; C: 62.33; H: 5.67; N : 18.17, Found: C: 62.32; H: 5.69; N: 18.19.

1-(4-Chlorophenyl)-3-methoxycarbonyl-5-ethyl-1,2,4-triazole (4i). Yield: 93\%; brown solids; mp 101-102 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.28(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 2.80\left(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.39(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}$, ArH), 7.45 (d, $2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 11.30,19.58$, 52.12, $125.86(2 \times \mathrm{CH}), 129.17(2 \times \mathrm{CH}), 134.56,134.98,153.25,158.45,159.65$; IR (diffuse reflectance) 3456 (m), $2985(\mathrm{~m}), 1735(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1635(\mathrm{~m}), 1496(\mathrm{~m}), 1219$ (m), 1141 (m), 1010 (m), 840 (m), 732 (m) cm ${ }^{-1}$; ESI-MS m/z $265(\mathrm{M}+\mathrm{H})^{+}$; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{Cl} \mathrm{N}_{3} \mathrm{O}_{2}$; C: $54.25 ; \mathrm{H}: 4.55$; N: 15.82, Found: C: $54.28 ; \mathrm{H}: 4.52 ; \mathrm{N}$: 15.83.

1-(4-Chlorophenyl)-3-methoxycarbonyl-5-isopropyl-1,2,4-triazole (4j). Yield: 98\%; yellow liquid; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.30(\mathrm{~d}, 6 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.09$
(septet, $1 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}), 3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.36(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}), 7.47$ $(\mathrm{d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 21.06(2 \times \mathrm{CH}), 25.70$, $52.44,126.64(2 \times \mathrm{CH}), 129.49(2 \times \mathrm{CH}), 134.84,135.55,153.67,160.02,162.76$; IR (diffuse reflectance) $3448(\mathrm{~m}), 2978(\mathrm{~m}), 1743(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1635(\mathrm{~m}), 1496(\mathrm{~m}), 1373$ (m), 1219 (m), 1010 (m), $840(\mathrm{~m}), 748(\mathrm{~m}) \mathrm{cm}^{-1}$; ESI-MS m/z $279(\mathrm{M}+\mathrm{H})^{+}$; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{Cl} \mathrm{N}_{3} \mathrm{O}_{2}$; C: 55.82; H: 5.04; N: 15.02, Found: C: 55.81; H: 5.06; N: 15.03

1-(4-Chlorophenyl)-3-methoxycarbonyl-5-n-butyl-1,2,4-triazole (4k). Yield: 76\%; brown liquid; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.85\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.22-1.32$ (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.71-1.74 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $2.78\left(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$), $3.99(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 7.38(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.49(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 13.53,22.25,26.25,29.72,52.82,126.57(2 \times \mathrm{CH}), 129.78(2 \times$ CH), 135.17, 135.81, 154.00, 158.26, 160.30; IR (diffuse reflectance) 3448 (m), 2353 (m), 1735 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 1635 (m), 1489 (m), 1404 (m), 1219 (m), 1141 (m), 956 (m), 833 (m), $732(\mathrm{~m}) \mathrm{cm}^{-1}$; ESI-MS $m / z 293(\mathrm{M}+\mathrm{H})^{+}$; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{Cl} \mathrm{N}_{3} \mathrm{O}_{2} ; \mathrm{C}$: 57.27; H: 5.49; N: 14.30, Found: C: 57.29; H: 5.50; N: 14.31.

1-(4-Chlorophenyl)-3-methoxycarbonyl-5-cyclopentyl-1,2,4-triazole (41). Yield: 57%; brown liquid; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.58-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.88(\mathrm{~m}$, 2 H), 1.97-1.99 (m, 4 H), 3.07 (quintet, $1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{CH}$), 3.99 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 7.38 $(\mathrm{d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}), 7.49(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 25.73(2 \times \mathrm{CH}), 32.98(2 \times \mathrm{CH}), 36.38,52.83,126.98(2 \times \mathrm{CH}), 129.76(2 \times$ CH), 135.31, 135.88, 154.04, 160.46, 162.31; IR (diffuse reflectance) 3053 (m), 2920 (m), 1739 (s, C=O), 1500 (m), 1481 (m), 1217 (m), 1134 (m), 1091 (m), 1012 (m), $837(\mathrm{~m}) \mathrm{cm}^{-1}$; ESI-MS m/z $305(\mathrm{M}+\mathrm{H})^{+}$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{2}$; C: 58.92; H: 5.27, N: 13.74, Found: C: 58.91; H: 5.25; N: 13.75.

1-(4-Chlorophenyl)-3-methoxycarbonyl-5-phenyl-1,2,4-triazole (4m). Yield: 86\%;
yellow solids; mp 139-140 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 4.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 7.24-7.50 (m, $9 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 52.83,126.41(2 \times \mathrm{CH})$, 126.62, $128.67(2 \times \mathrm{CH}), 129.01(2 \times \mathrm{CH}), 129.66(2 \times \mathrm{CH}), 130.75,135.52,135.95$, 154.34, 155.62, 160.12; IR (diffuse reflectance) 3448 (m), 2916 (m), 1743 (s, C=O), $1635(\mathrm{~m}), 1496(\mathrm{~m}), 1465(\mathrm{~m}), 1219(\mathrm{~m}), 1172(\mathrm{~m}), 987(\mathrm{~m}), 840(\mathrm{~m}), 694(\mathrm{~m}) \mathrm{cm}^{-1}$; ESI-MS $m / z 313(\mathrm{M}+\mathrm{H})^{+}$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}_{2}$; C: 61.25; H: 3.86; N : 13.39, Found: C: 61.23; H: 3.89; N: 13.42.

1-(4-Chlorophenyl)-3-methoxycarbonyl-5-(2-furyl)-1,2,4-triazole (4n). Yield: 61\%; yellow solids; mp $175-176{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 3.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $6.45(\mathrm{q}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}$, furyl-H), $6.85(\mathrm{~d}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}$, furyl-H), 7.38-7.40(m, 3 $\mathrm{H}, \mathrm{ArH}), 7.46(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 52.91$, 111.93, 114.52, $127.25(2 \times \mathrm{CH}), 129.47(2 \times \mathrm{CH}), 135.82,136.08,141.25,144.99$, 147.62, 154.52, 159.91; IR (diffuse reflectance) 3448 (m), 2954 (m), 1743 (s, C=O), 1635 (m), 1496 (m), 1396 (m), 1226 (m), 1018 (m), 848 (m), 763 (m) cm ${ }^{-1}$; ESI-MS $m / z 304(\mathrm{M}+\mathrm{H})^{+}$; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl} \mathrm{N}_{3} \mathrm{O}_{3}$; C: 55.37; H: 3.32; N: 13.84, Found: C: 55.35; H: 3.35; N: 13.87.

1-(4-Chlorophenyl)-3-methoxycarbonyl-5-(2-thienyl)-1,2,4-triazole (4o). Yield: 82%; brown solids; mp $139-140{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 4.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $6.98(\mathrm{dd}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}, 4.5 \mathrm{~Hz}$, thienyl-H), $7.20(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}$, thienyl-H), $7.42(\mathrm{~d}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}$, thienyl-H), $7.42(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}), 7.49(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.5 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 52.91,127.67,127.77,127.96(2 \times \mathrm{CH})$, $129.98(3 \times \mathrm{CH}), 130.24,135.54,136.70,151.35,154.37,160.04$; IR (diffuse reflectance) 3448 (m), 2954 (m), 1736 (s, C=O), 1635 (m), 1558 (m), 1404 (m), 1219 (m), 1165 (m), 956 (m), $840(\mathrm{~m}), 732(\mathrm{~m}) \mathrm{cm}^{-1}$; ESI-MS m/z $319(\mathrm{M}+\mathrm{H})^{+}$; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{~S} ; \mathrm{C}: 52.59$; $\mathrm{H}: 3.15$; N: 13.14, Found: C: $52.56 ; \mathrm{H}: 3.17$; N: 13.14.

1-(4-Chlorophenyl)-3-methoxycarbonyl-5-(2-pyrrolyl)-1,2,4-triazole (4p). Yield: 56%; brown solids; mp $200-201{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 4.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 5.87-5.88 (m, 1 H, ArH), 6.11-6.12 (m, 1 H, ArH), 6.92-6.93 (m, 1 H, ArH), 7.46 (d, $2 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{ArH}$), $7.52(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{ArH}$), 9.61 (br, $1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 52.96,110.52,111.51,118.12,121.90,127.95(2 \times \mathrm{CH}), 129.98$ $(2 \times \mathrm{CH}), 135.91,136.57,150.15,153.88,160.33$; IR (diffuse reflectance) $3261(\mathrm{~m})$, 2954 (m), 1737 (s, C=O), 1598 (m), 1498 (m), 1390 (m), 1220 (s), 1087 (m), 1004 (m), $914(\mathrm{~m}) \mathrm{cm}^{-1}$; ESI-MS m/z $302(\mathrm{M}+\mathrm{H})^{+}$; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClN}_{4} \mathrm{O}_{2}$; C: 55.55; H: 3.66; N: 18.51, Found: C: 55.54; H: 3.68; N: 18.52.

1-(2-Trifluorophenyl)-3-methoxycarbonyl-5-(2-pyrrolyl)-1,2,4-triazole (4q). Yield: 43%; brown solids; mp $90-91{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 3.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 5.40-5.43 (m, 1 H, ArH), 6.01-6.03 (m, 1 H, ArH), 6.88-6.89 (m, 1 H, ArH), 7.48$7.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.73-7.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.88-7.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 9.99(\mathrm{br}, 1 \mathrm{H}$, $\mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 52.80,110.36,111.21,117.95,122.03,127.90$, 127.92, $127.93\left(\mathrm{CF}_{3}\right), 128.18\left(\mathrm{CF}_{3}\right), 128.43\left(\mathrm{CF}_{3}\right), 128.69\left(\mathrm{CF}_{3}\right), 130.27,131.36$, $133.38,134.90,151.48,153.75,160.20$; IR (diffuse reflectance) 2360 (m), 1743 (s, $\mathrm{C}=\mathrm{O}$), 1604 (m), 1496 (m), 1388 (m), 1319 (s), 1226 (m), 1180 (m), 1033 (m) cm^{-1}; ESI-MS m/z $336(\mathrm{M}+\mathrm{H})^{+}$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{2}$; C: 53.58; H: 3.30; N : 16.66, Found: C: 53.61; H: 3.31; N: 16.63.

1-(3-Trifluorophenyl)-3-methoxycarbonyl-5-(2-pyrrolyl)-1,2,4-triazole (4r). Yield: 44%; brown solid; mp $159-160{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 4.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 5.83-5.84 (m, 1 H), 6.09-6.10 (m, 1 H), 6.93-6.93 (m, 1 H), 7.68 (t, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}$, ArH), $7.74(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}$), $7.83(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.84(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{ArH}), 9.98$ (br, $1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 52.93,110.48,111.47$, $117.75,122.26,123.79,123.82,127.13,129.88,130.34,132.03\left(\mathrm{CF}_{3}\right), 132.30\left(\mathrm{CF}_{3}\right)$,
$132.57\left(\mathrm{CF}_{3}\right), 132.83\left(\mathrm{CF}_{3}\right), 137.91,150.24,154.02,160.15$; IR (diffuse reflectance) 3336 (m), 1741 (s, C=O), 1498 (m), 1390 (m), 1367 (m), 1276 (m), 1130 (m), 1095 (m), $1070(\mathrm{~m}) \mathrm{cm}^{-1}$; ESI-MS m/z $336(\mathrm{M}+\mathrm{H})^{+}$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{2}$; C: 53.58; H: 3.30; N: 16.66, Found: C: 53.61; H: 3.31; N: 16.63.

1-(4-Trifluorophenyl)-3-ethyloxycarbonyl-5-methyl-1,2,4-triazole (8a). Yield: $81 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 1.42\left(\mathrm{t}, 3 \mathrm{H}, J=7.10 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.59(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $4.47\left(\mathrm{q}, 2 \mathrm{H}, J=7.10 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.64(\mathrm{~d}, 2 \mathrm{H}, J=8.40 \mathrm{~Hz}, \mathrm{ArH}), 7.79(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.40 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 13.40,14.25,62.13,124.29,126.76$, $126.83,131.23\left(\mathrm{CF}_{3}\right), 131.47\left(\mathrm{CF}_{3}\right), 131.89\left(\mathrm{CF}_{3}\right), 132.55\left(\mathrm{CF}_{3}\right), 139.48,154.10$, 154.42, 159.67; IR (diffuse reflectance) 2924 (m), 1735 (s, C=O), 1612 (m), 1519 (m), 1473 (m), 1211 (m), $1126(\mathrm{~m}), 1064(\mathrm{~m}), 848(\mathrm{~m}), 671(\mathrm{~m}) \mathrm{cm}^{-1}$.

1-Phenyl-3-ethanone-5-methyl-1,2,4-triazole (8b). Yield: 79\%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $200 \mathrm{MHz}) \delta 2.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.25-7.55(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta$ 13.19, 27.00, 124.73, 129.60 (28 CH), 136.77, 154.17, 159.30, 191.45; IR (diffuse reflectance) 2920 (m), 1701 (s, C=O), 1504 (m), 1458 (m), 1354 (m), 1141 (m), $910(\mathrm{~m}) \mathrm{cm}^{-1}$.

References

1
F. E. Jernigan III, N. A. Sieracki, M. T. Taylor, A. S. Jenkins, S. E. Engel, B. W. Rowe, F. A. Jové, G. P. A. Yap, E. T. Papish and G. M. Ferrence, Inorg. Chem., 2007, 46, 360-362.

2 (a) L.-Y. Wang, W.-C. Tseng, T.-S. Wu, K. Kaneko, M. Kimura, H. Takayama, W.-C. Yang, J. B. Wu, S.-H. Juang and F. F. Wong, Bioorg. Med. Chem. Lett., 2011, 21, 5358-5362; (b) L.-Y. Wang, W.-C. Tseng, H.-Y. Lin and F. F. Wong, Synlett, 2011, 1467-1471; (c) W.-C. Tseng, L.-Y. Wang, T.-S. Wu and F. F. Wong, Tetrahedron, 2011, 67, 5339-5345.

