Supporting Information

for

Structures and properties of four coordination polymers constructed from

1,3-bis-(4-pyridyl)-propane and aromatic dicarboxylic acids[†]

Bo Xu*, Qing-Shan Liang, Lian-Tao Liu, Qi-Sheng Liu and Cun-Cheng Li*

Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan, 250022, China.

2Theta/degree

Figure S1 X-Ray powder diffraction patterns of 1-4.

Figure S2 TG curves for 1-4

Figure S3 FT-IR curves for complexes 1-4.

Figure S4 UV spectra for 1-4 in solid state.

Figure S5 Photos of complexes 1-4. Suitable single crystal with approximate dimensions (0.33 mm × 0.28 mm × 0.22 mm for 1, 0.28 mm × 0.26 mm × 0.23 mm for 2, 0.38 mm × 0.30 mm × 0.20 mm for 3 and 0.22 mm × 0.22 mm × 0.20 mm for 4 were chosen for X-ray crystal structure data collection.

Complex 1			
Zn1-O1	1.961(3)	Zn1-N1	2.051(4)
Zn1-O4 ¹	1.959(3)	Zn1-N2 ²	2.046(4)
O1-Zn1-N1	107.56(14)	O4 ² -Zn1-N1	99.75(15)
$O1$ - $Zn1$ - $N2^1$	113.68(15)	O4 ² -Zn1-N2 ¹	121.28(14)
O4 ² -Zn1-O1	102.63(13)	N2 ¹ -Zn1-N1	110.40(15)
Complex 2			
Co1-O1	2.2187(16)	Co1-O3 ²	2.0366(17)
Co1-O2	2.1336(15)	Co1-N2 ³	2.171(2)
Co1-O4 ¹	2.0306(15)	Col-N1	2.153(2)
O2-Co1-O1	59.95(6)	O4 ² -Co1-O1	95.12(6)
O2-Co1-N2 ¹	93.78(7)	O4 ² -Co1-O2	155.03(7)
O2-Co1-N1	90.98(7)	O4 ² -Co1-O3 ³	115.58(6)
O3 ³ -Co1-O1	148.89(6)	O4 ² -Co1-N2 ¹	87.01(7)
O3 ³ -Co1-O2	89.38(6)	O4 ² -Co1-N1	89.37(7)
O3 ³ -Co1-N2 ¹	87.22(8)	N1-Co1-O1	94.18(7)
O3 ³ -Co1-N1	91.20(7)	N1-Co1-N2 ¹	174.97(7)
N2 ¹ -Co1-O1	89.62(7)		
Complex 3			
Zn1-N1	2.074(5)	$Zn2-N2^2$	2.056(5)
Zn1-N4	2.058(4)	Zn2-O10 ³	1.955(4)
Zn1-O1	1.975(4)	Zn2-O7	1.980(4)
$Zn1-O4^1$	1.946(4)	Zn2-N3	2.075(5)
N4-Zn1-N1	105.02(18)	N2 ² -Zn2-N3	106.20(18)
O1-Zn1-N1	108.37(18)	$O10^{3}$ -Zn2-N2 ²	124.97(19)
O1-Zn1-N4	98.67(18)	O10 ³ -Zn2-O7	119.38(19)
$O4^{1}$ -Zn1-N1	99.02(18)	O10 ³ -Zn2-N3	98.96(18)
$O4^{1}$ -Zn1-N4	125.72(18)	$O7-Zn2-N2^2$	97.75(18)
O4 ¹ -Zn1-O1	118.71(18)	O7-Zn2-N3	108.55(18)
Complex 4			
Co1-O2	2.247(4)	Col-Ol	2.180(4)
Col-OlW	2.102(5)	Co1-O3 ²	2.031(4)
$Co1-N2^1$	2.122(5)	Col-N1	2.143(5)
O1W-Co1-O2	87.44(17)	O1-Co1-O2	59.49(15)
$O1W-Co1-N2^1$	91.01(19)	O3 ² -Co1-O2	116.15(17)
01W-Co1-O1	91.26(19)	O3 ² -Co1-O1W	85.9(2)
O1W-Co1-N1	173.3(2)	O3 ² -Co1-N2 ¹	93.48(19)
N2 ¹ -Co1-O2	150.11(18)	O3 ² -Co1-O1	174.97(18)

Table S1 Selected bond lengths (Å) and angles (°) for complexes

N2 ¹ -Co1-O1	90.73(18)	O3 ² -Co1-N1	91.90(18)
N2 ¹ -Co1-N1	95.49(19)	N1-Co1-O2	87.80(16)
N1-Co1-O1	90.43(17)		

Symmetry transformations used to generate equivalent atoms:

for **1**, 1 -1/2+X,1/2-Y,-1/2+Z; 2 1/2+X,-1/2-Y,-1/2+Z

for **2**, 1 1-X,-Y,1-Z; 2 +X,-1+Y,+Z

for **3**, 1 -1+X,+Y,+Z; 2 +X,1+Y,1+Z; 3 1+X,+Y,+Z

for **4**, 1 1/2+X,1/2-Y,1/2+Z; 2 +X,1-Y,1/2+Z