Anion-Dependent Spin Crossover in Solution for an Iron(II) Complex of a 1*H*-pyrazolyl Ligand

Simon A. Barrett and Malcolm A. Halcrow*

School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT. E-mail: m.a.halcrow@leeds.ac.uk

Electronic Supplementary Information

Experimental details

Figure S1 Variable temperature magnetic susceptibility data for three salts $[Fe(3-bpp)_2]X_2$ ($X^- = I^-$, BF_4^- and PF_6^-) as reported by Goodwin *et al.*.

Figure S2 ¹H NMR spectra of five $[Fe(3-bpp)_2]X_2$ (**1X**₂) salts in 9:1 v/v (CD₃)₂CO:D₂O at 298 K, showing the variation in the isotropic shifts with the anion present.

Table S1 Experimental details for the single crystal structure determinations of solvates of $[Fe(3-bpp)_2][BF_4]_2$.

Figure S3 Comparison of the solvent dependence of the ¹H isotropic shifts of $[Fe(3-bpp)_2]X_2$ (**1X**₂) on the anion X⁻, in four different solvents (Table S1).

Figure S4 Variable temperature magnetic susceptibility data for $1X_2$ in neat (CD₃)₂CO.

Figure S5 Variable temperature magnetic susceptibility data for $1[BPh_4]_2$ in 9:1 v/v (CD₃)₂CO:D₂O, in the presence of [NBu₄]Br.

Figure S6 Dependence of $T_{\frac{1}{2}}$ on bromide ion concentration for **1[BPh_4]**₂ in the presence of y equivalents of [NBu₄]Br.

Figure S7 UV/vis spectra of five of the compounds in this work.

References

Experimental

Reaction of $Fe[BF_4]_2 \cdot 6H_2O$ (0.20 g, 0.59 mmol) by 3-bpp^[1] (0.25 g, 1.18 mmol) in nitromethane (25 cm³) at room temperature rapidly afforded a yellow-brown solution. This was filtered, concentrated to 5 cm³. Slow diffusion of diethyl ether vapour into the filtered solution yielded large brown blocks, that decompose to yellow solvent-free **1[BF_4]**₂ when dried *in vacuo*.

A similar complexation of FeBr₂·4H₂O (0.17 g, 0.59 mmol) and 3-bpp (0.25 g, 1.18 mmol) in methanol (25 cm³) gave an orange solution, that yielded the methanol solvate of **1Br**₂ as an orange-brown powder following the work-up as above.

The other salts of $[Fe(3-bpp)_2]^{2+}$ (1^{2+}) were prepared by warming a mixture of $FeCl_2 \cdot 4H_2O$ (0.12 g, 0.59 mmol) and 3-bpp (0.25 g, 1.18 mmol) in water (50 cm³), until all the ligand had dissolved. Adding excess NaBPh₄·H₂O, NaCF₃SO₃, KNCS or NaNO₃ to the filtered brown solutions immediately yielded an orange or brown precipitate, which was collected, washed with water and dried *in vacuo*. Recrystallisation by slow diffusion of diethyl ether vapour into a solution of the compounds in nitromethane (X⁻ = BPh₄⁻ or CF₃SO₃⁻), or methanol (X⁻ = NCS⁻, NO₃⁻) gave the pure complexes as brown solids.

For $1[BPh_4]_2 \cdot \frac{1}{2}H_2O$:^[3] found C, 74.9; H, 5.15; N, 12.6 %. Calcd. for $C_{70}H_{58}B_2FeN_{10} \cdot \frac{1}{2}H_2O$ C, 75.7; H, 5.28; N, 12.4 %.

For **1[BF4]**₂:^[4,5] found C, 40.5; H, 3.05; N, 21.4 %. Calcd. for C₂₂H₁₈B₂F₈FeN₁₀ C, 40.5; H, 2.78; N, 21.5 %.

For $1[CF_3SO_3]_2 \cdot H_2O^{[6]}$ found C, 36.1; H, 2.50; N, 17.3 %. Calcd. for $C_{24}H_{18}F_6FeN_{10}O_6S_2 \cdot H_2O$ C, 36.3; H, 2.54; N, 17.6 %.

For $1[NCS]_2 \cdot H_2O$:^[7] found C, 46.4; H, 3.15; N, 27.2 %. Calcd. for $C_{24}H_{18}FeN_{12}S_2 \cdot H_2O$ C, 47.1; H, 3.29; N, 27.4 %.

For $1[NO_3]_2 \cdot 2H_2O$:^[8] found C, 41.4; H, 3.35; N, 26.4 %. Calcd. for $C_{22}H_{18}FeN_{12}O_6 \cdot 2H_2O$ C, 41.4; H, 3.47; N, 26.3 %.

For $1Br_2$ ·CH₃OH: found C, 41.2; H, 3.05; N, 20.7 %. Calcd. for C₂₂H₁₈Br₂FeN₁₀·CH₃OH C, 41.2; H, 3.31; N, 20.9 %. This salt has been previously reported as its pentahydrate and anhydrous solid forms.^[8]

Other measurements

UV/visible spectra were obtained with a Perkin-Elmer Lambda 900 spectrophotometer operating between 200–1,500 nm, in 1 cm quartz cells. Paramagnetic ¹H NMR spectra were measured with a Bruker DPX300 spectrometer operating at 300.2 MHz. Magnetic susceptibility measurements in solution were obtained by Evans method using Bruker DRX500 or Bruker Avance500 spectrometers operating at 500.13 MHz.^[9] Duplicate measurements on both spectrometers were performed to confirm their temperature calibration was consistent. Tetramethylsilane was added to all the solutions as an internal standard. A diamagnetic correction for the sample,^[10] and a correction for the variation of the density of the solvent with temperature,^[11] were applied to these data. All magnetochemical data manipulation and graph plotting was carried out using *SIGMAPLOT*.^[12]

Each Evans method measurement was performed at a concentration of 10 ± 1 mM. The UV/vis spectra required lower concentrations, of 0.16-0.20 mM.

Fig. S1 Variable temperature magnetic susceptibility data for $[Fe(3-bpp)_2]X_2$ (**1** X_2 ; $X^- = I^-$, BF_4^- and PF_6^-), as reported by Goodwin *et al.*^[8] The data have been converted from μ_{eff} to $\chi_M T$, and replotted.

These measurements were performed in "acetone containing a few drops of water", and in the presence of excess 3-bpp ligand. The excess ligand has no apparent influence on the results, based on the similarity between the data for $1[BF_4]_2$ in the Figure, and in this study.

Fig. S2 ¹H NMR spectra of five $[Fe(3-bpp)_2]X_2$ (**1** X_2) salts in 9:1 v/v (CD₃)₂CO:D₂O at 298 K, showing the variation in the isotropic shifts with the anion present. See Table S1 for the assignment of these resonances.

Reduced isotropic shifts imply the sample contains a smaller high-spin population at room temperature,^[13] which would be consistent with an increased spin-crossover $T_{\frac{1}{2}}$ value. These isotropic shifts do not depend on concentration, all other things being equal.^[13]

of 15 minor and . These data are protect in TIS. 51.						
Solvent	X ⁻	$\beta^{N[14]}$	$Py H^4$	NH	$\operatorname{Py} H^{3/5}$	$Pz H^4 \& Pz H^5$
CD ₃ CN	BPh_4^-	0	18.6	32.7	45.5	53.1, 53.8
	$\mathrm{BF_4}^-$	0.69	18.5	32.8	45.5	53.0, 53.8
	$CF_3SO_3^-$	0.74	18.2	32.6	44.6	52.0, 52.8
$(CD_3)_2CO$	$\mathrm{BPh_4}^-$	0	18.6	33.4	44.5	51.8, 52.5
	$\mathrm{BF_4}^-$	0.69	18.1	33.2	43.4	50.5, 51.8
	$CF_3SO_3^-$	0.74	17.7	32.7	42.4	49.2, 50.2
CD ₃ OD	BPh_4^-	0	18.3	_	42.5	49.9, 49.9
	$\mathrm{BF_4}^-$	0.69	18.3	_	42.3	49.5, 49.7
	$CF_3SO_3^-$	0.74	18.3	—	42.2	49.4, 49.8
	NCS ^{-a}	0.78	18.2	_	42.0	49.2, 49.6
	NO_3^{-b}	0.86	18.2	_	42.0	49.2, 49.6
	Br^{-b}	0.93	18.3	_	42.2	49.5, 49.8
9:1 v/v	$\mathrm{BPh_4}^-$	0	16.9	—	38.7	45.2, 45.9
(CD ₃) ₂ CO:D ₂ O	$\mathrm{BF_4}^-$	0.69	16.6	—	38.0	44.3, 45.2
	$CF_3SO_3^-$	0.74	16.6	_	37.7	44.0, 44.8
	NCS ^{-b}	0.78	16.3	_	37.0	43.2, 43.9
	NO_3^{-b}	0.86	16.4	—	37.0	43.2, 44.0
	Br^{-b}	0.93	16.3	_	37.0	43.2, 44.0

Table S1 ¹H NMR data for $[Fe(3-bpp)_2]X_2$ (**1** X_2) in different solvents at 298 K, at a concentration of 15 mmol dm⁻³. These data are plotted in Fig. S1.

^aSpectrum also contains broad peaks assignable to free 3-bpp at 6.9, 7.6, 7.7 and 7.8 ppm with a 2:2:2:1 integral ratio. This species has a 40 % integral ratio compared to the main, paramagnetic complex. This is evidence for substantial dissociation of the complex in this solvent, probably from displacement of 3-bpp by the nucleophilic NCS⁻ ion.

^bSpectrum contains free 3-bpp (see above), with a 6-10 % integral ratio compared to the main, paramagnetic complex. This is evidence for a small degree of dissociation of the complex in this solvent (the integral of the diamagnetic free ligand will be overestimated compared to the paramagnetic complex, because of line-broadening in the contact-shifted peaks).

The β^{N} parameter is a measure of the hydrogen-bond acceptor character of an anion, derived from a ¹H NMR measurement of its association with the 1-butyl-3-methylimidazolium ([Bmim]⁺) cation in CD₂Cl₂.^[14]

The relationship between δ and the different solvents used, for a given anion X⁻, has been reported in ref. [5].

Fig. S3 Comparison of the solvent dependence of the ¹H isotropic shifts of $[Fe(3-bpp)_2]X_2$ (**1**X₂) on the anion X⁻, in three different solvents (Table S1). Colour code: $X^- = BPh_4^-$ (black), BF_4^- (yellow), $CF_3SO_3^-$ (red), NCS^- (white), NO_3^- (cyan), Br^- (green).

There is a small but consistent decrease in the isotropic shifts (δ) in CD₃CN and (CD₃)₂CO when X⁻ = CF₃SO₃⁻, compared to BPh₄⁻ and BF₄⁻. A comparable trend was also seen for all the salts in the acetone/water mixed solvent. That implies that salts of the complex with more associating anions have a slightly greater low-spin population at room temperature. This was subsequently confirmed by the Evans method study described in the main article.

No comparable relationship between δ and X⁻ was observed in CD₃OD, implying that hydrogen bonding between 1^{2+} and X⁻ is weaker in that solvent, as expected.

Fig. S4 Variable temperature magnetic susceptibility data for $1X_2$ in neat $(CD_3)_2CO$, with $X^- = BPh_4^-$ (black circles), BF_4^- (yellow squares) and $CF_3SO_3^-$ (red diamonds).

Fig. S5 Variable temperature magnetic susceptibility data for $1[BPh_4]_2$ in 9:1 v/v (CD₃)₂CO:D₂O, in the presence of *y* equivalents of [NBu₄]Br: y = 0 (black circles), y = 0.78 (green squares) and y = 1.71 (pink triangles).

Fig. S6 Dependence of $T_{\frac{1}{2}}$ on bromide ion concentration for **1[BPh4]**₂ in the presence of y equivalents of [NBu4]Br. The open circle is for pure **1Br**₂ (putatively, y = 2).

Fig. S5 UV/vis spectra of five of the compounds in this work, in 9:1 v/v $(CH_3)_2CO:H_2O$ at 293 K: $1[BPh_4]_2$ (black), $1[BF_4]_2$ (yellow), $1[CF_3SO_3]_2$ (red), $1[NO_3]_2$ (cyan) and $1Br_2$ (green).

The differing depth of the trough against the solvent shoulder, near 360 nm, reflects small differences in the concentrations of the samples, which were between $1.6-2.0 \times 10^{-4} \text{ mol dm}^{-3}$. Otherwise, these spectra are identical within experimental error, and are consistent with those reported previously for **1[BF4]**₂ in (CH₃)₂CO:H₂O solvent mixtures.^[5]

The invariance of these spectra with the anion present may reflect the sample concentrations used in the UV/vis measurements, which were *ca*. 50x lower than for the NMR and Evans method experiments. This lower concentration will promote dissociation of any supramolecular anion complexes of 1^{2+} .

References

- [1] Y. Lin and S. A. Lang jr., J. Heterocycl. Chem., 1977, 14, 345.
- [2] J. M. Holland, J. A. McAllister, Z. Lu, C. A. Kilner, M. Thornton-Pett and M. A. Halcrow, *Chem. Commun.*, 2001, 577.
- [3] P. King, J. J. Henkelis, C. A. Kilner and M. A. Halcrow, Polyhedron, 2013, 52, 1449.
- [4] K. H. Sugiyarto and H. A. Goodwin, Aust. J. Chem., 1988, 41, 1645.
- [5] S. A. Barrett, C. A. Kilner and M. A. Halcrow, *Dalton Trans.*, 2011, 40, 12021.
- [6] K. H. Sugiyarto, K. Weitzner, D. C. Craig and H. A. Goodwin, *Aust. J. Chem.*, 1997, 50, 869.
- [7] K. H. Sugiyarto, M. L. Scudder, D. C. Craig and H. A. Goodwin, Aust. J. Chem., 2000, 53, 755.
- [8] K. H. Sugiyarto, D. C. Craig, A. D. Rae and H. A. Goodwin, Aust. J. Chem., 1994, 47, 869.
- [9] D. F. Evans, J. Chem. Soc., 1959, 2003;
 E. M. Schubert, J. Chem. Educ., 1992, 69, 62.
- [10] C. J. O'Connor, Prog. Inorg. Chem., 1982, 29, 203.
- [11] W. A. Felsing and S. A. Durban, J. Am. Chem. Soc., 1926, 48, 2885;
 K. T. Thomas and R. A. McAllister, AIChE J., 1957, 3, 161;
 T. W. Yergovich, G. W. Swift and F. Kurata, J. Chem. Eng. Data, 1971, 16, 222;
- [12] SIGMAPLOT, v. 8.02, SPSS Scientific Inc., Chicago IL, 2002.
- [13] B. Weber and F. A. Walker, Inorg. Chem., 2007, 46, 6794.
- [14] R. Lungwitz and S. Spange, New J. Chem., 2008, 32, 392.