Supporting Information

Synthesis and Characteristics of High-Nitrogen 1,2,4-Oxadiazoles

Zhanda Fu, Yang Wang, Li Yang, Rui Su, Jun Chen, Fude Nie, Jinglun Huang and Fu-Xue Chen*
fuxue.chen@bit.edu.cn
General. S1
AOG, $\mathrm{AOG}_{2} \mathrm{Tz}$ S2
MOPAC calculation of AOG, $\mathrm{AOG}_{2} \mathrm{Tz}$ S2
Spectra of $\mathrm{AOG}, \mathrm{AOG}_{2} \mathrm{Tz}$ S4

General

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are recorded on Bruker Advance 400 spectrometer at 400 and 100 MHz , respectively. Chemical shifts are reported in ppm relative to TMS. The solvent is $\left[\mathrm{D}_{6}\right]$ dimethyl sulfoxide (DMSO- d_{6}) unless otherwise specified. The melting, decomposition points is recorded with the peak value on a METTLER TOLEDO differential scanning calorimeter at a scan rate of $10{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$, IR spectra is recorded on IR-408 using KBr pellets. ESI-MS is recorded and analyzed on Aglient 500MS, Bruker Apex IV FTMS and Bruker Compass Data Analysis 4.0. NOG and BT are prepared refereeing to reported methods. Other materials are purchased from from Alfa Aesar. The crystal density is calculated by a patented method. ${ }^{1}$

3-azido-5-guanidino-1,2,4-oxadiazole (AOG)

To a solution of DMSO $(4 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and $\mathrm{NaN}_{3}(195 \mathrm{mg}, 3 \mathrm{mmol})$ is added NOG $(344 \mathrm{mg}, 2 \mathrm{mmol})$. The mixture is stirred with an overhead stirrer, heated to $50^{\circ} \mathrm{C}$ for 5 h . The reaction is then poured into ice water (10 mL), the pale yellow precipitate is filtered, washed thoroughly with water and dried to givet the product solid ($120 \mathrm{mg}, 36 \%$). $T_{\text {dec }}: 196{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \mathrm{TMS}\right): \delta_{\mathrm{H}} 7.14\left(\mathrm{NH}_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}, TMS): $\delta_{\mathrm{C}} 174.6,163.5$, 159.8. IR (KBr): 3433, 3391, 3230, 3103, 2160, 1673, 1580, 1537, 1420, 1214, 974, $766, \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{8} \mathrm{O}, 168$: C, 21.43; H, 2.37; N, 66.65; Found: C, 21.60; H, 2.37; N, 66.52.

3,6-bis(3'-azido-1',2',4'-oxadiazole-5'-guanyl)- 1,2,4,5-tetrazine (AOG $\mathbf{2} \mathbf{T z}$)

AOG ($252 \mathrm{mg}, 1.5 \mathrm{mmol}$) is placed in an oven dried round-bottomed flask (50 mL) with a stir bar and dissolved in anhydrous dimethylformamide (20 mL). The solution is cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{NaH}(60 \%$ dispersion in oil, $92 \mathrm{mg}, 3.3 \mathrm{mmol}$) is added portionwise over 5 \min. The reaction is stirred for 30 min at $0^{\circ} \mathrm{C}$ and $\mathrm{BT}(162 \mathrm{mg}, 0.6 \mathrm{mmol})$ is added in one portion. The reaction is stirred at $0^{\circ} \mathrm{C}$ for 1 h and then allowed to warm to room temperature for 4 h . The reaction is then poured into ice water $(20 \mathrm{~mL})$ and acidified to $\mathrm{pH}=1$ by the addition of 3 N HCl . The brown-red precipitate is filtered, washed thoroughly with water and dried to give $\mathrm{AOG}_{2} \mathrm{Tz}\left(240 \mathrm{mg}, 96.7 \%\right.$). $T_{\text {dec. }}: 210{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta_{\mathrm{H}} 12.14$ (bs, 2H), 9.05 (bs, 2H), 8.80(bs, 2H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta_{\mathrm{C}} 154.9,158.6,164.0$, 174.0. IR (KBr): 3372, 3262, 3212, 2153, 1635, 1538, 1367, 1294, 1194, 1050, 774, 610, cm^{-1}. HRMS-ESI (414.1055): m / z positive mode, $415.1058[\mathrm{M}+\mathrm{H}]^{+}$.

Calculated total energy (E0), zero-point energy (ZPE), enthalpy of formation (HOF) of compound AOG and AOG $_{2} \mathbf{T z}$

Isodesmic reactions for compound $\mathbf{A O G}$ and $\mathbf{A O G}_{\mathbf{2}} \mathbf{T z}$

First, we calculated the heat of formation of each molecule according to following formulation:
heat of formation of each molecule at 0 K :

$$
\begin{aligned}
\Delta_{f} H^{0}(M, 0 K) & =\sum_{\text {atoms }} x \Delta_{f}(X, 0 K)-\sum D_{0}(M) \\
& =\sum_{\text {atoms }} x \Delta_{f}(X, 0 K)-\left(\sum_{\text {atoms }} x \varepsilon_{0}(X)-\varepsilon_{0}(M)-\varepsilon_{\text {zpt }}(M)\right)
\end{aligned}
$$

Here, M represents the molecule, X represents atom.
Here, except the enthalpy of atom, other energy all are calculated by first-principle. The Experimental enthalpy values of atom are taken from J. Chem. Phys. 106, 1063 (1997).

Heat of formation of each molecule at 298 K :

$$
\begin{aligned}
\Delta_{f} H^{0}(M, 298 K) & =\Delta_{f} H^{0}(M, 0 K)+\left(H_{M}^{0}(298 K)-H_{M}^{0}(0 K)\right) \\
& -\sum_{\text {atoms }} x\left(H_{X}^{0}(298 K)-H_{X}^{0}(0 K)\right)
\end{aligned}
$$

Here, (H(298K)-H(0)) are thermal correction of the heat of formation for molecule or atom, respectively.
Second, we calculated the reaction enthalpy of isodesmic reactions. It equals to the enthalpy difference between the substrate and product.

We also calculated heat of formation for some small molecule, such as CH_{4}. Our calculated formation of heat also is agreement well with experiment.

For more information on the calculation formulation, you can refer the webpage: http://www.gaussian.com/g_whitepap/thermo.htm\#SECTION00053000000000000000

All the calculations are done at the semi-empirical level using the PM6 method ${ }^{2}$ implemented in the MOPAC package ${ }^{3}$. The heat of formation is obtained at the room temperature $(298.15 \mathrm{~K})$ through the atomization reaction.

Table S1 Calculated heats of formation by MOPAC

Compd.	$\mathrm{E}_{0} / \mathrm{ev}$	ZPE/ev	$\mathrm{HOF} /\left(\mathrm{KJ} \mathrm{mol}^{-1}\right)$
AOG	-2367.64277	2.60549941449	235.07941
$\mathbf{A O G}_{2} \mathbf{T z}$	-5667.81698	5.60450188663	957.34882

References

Y.-K. Wu, D.-Y. Chen, H.-S. Dong, Chinese Patent, 2011, CN101957300A.
2. J. J. P. Stewart, J. Mol. Modeling, 2007, 13, 1173-1213.
3. MOPAC2009, J. J. P. Stewart, Stewart Computational Chemistry, Colorado Springs: CO, USA, HTTP://OpenMOPAC. net (2008).

Figure S1 IR spectra of of AOG

Figure S2 ${ }^{1} \mathrm{H}$ NMR of AOG

Figure S3 ${ }^{13} \mathrm{C}$ NMR of AOG

Figure S4 DSC of AOG

Figure S5 IR spectra of of $\mathrm{AOG}_{2} \mathrm{Tz}$

Figure S6 ${ }^{1} \mathrm{H}$ NMR of $\mathrm{AOG}_{2} \mathrm{Tz}$

Figure S7 ${ }^{1} \mathrm{H}$ NMR of $\mathrm{AOG}_{2} \mathrm{Tz}$

Figure $\mathbf{S 8}$ HRMS of $\mathrm{AOG}_{2} \mathrm{Tz}$

Figure S9 DSC of $\mathrm{AOG}_{2} \mathrm{Tz}$

