## PET depolymerisation in supercritical ethanol catalysed by [Bmim][BF<sub>4</sub>]

Cátia Santos Nunes, Michael Jackson Vieira da Silva, Danielle Cristina da Silva,

Adonilson dos Reis Freitas, Fernanda Andréia Rosa, Adley Forti Rubira, Edvani Curti

 $Muniz^*$ 

Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900, Maringá-PR, Brazil

**Electronic Supplementary Information (ESI)** 

## 1. Figure S1

**Figure S1** - <sup>1</sup>H NMR spectra of recovering of the ionic liquid after the depolymerisation reaction, (run 8).

The <sup>1</sup>H NMR spectrum of [Bmim][BF<sub>4</sub>] recovered after the depolymerisation reaction (run 8) shows that there were no changes in [Bmim] [BF<sub>4</sub>] after be exposed to conditions of run 8. This indicates that ionic liquid remains stable and it is not decomposed during the reaction. The peak at  $\delta = 2.07$  ppm in Figure S1 indicated presence of small amount of DET in the recovered LI.

## 2. Figure S2



**Figure S2** - FTIR spectra to ionic liquid [Bmim][BF<sub>4</sub>] in the EtOH room temperature (RT) and exposed to supercritical ethanol (EtOHsc) after 60 min.

## 3. Figure S3



**Figure S3** - <sup>1</sup>H NMR spectra of ionic liquid [Bmim][BF<sub>4</sub>] exposed to supercritical ethanol for 60 min and [Bmim][BF<sub>4</sub>] not exposed.

Figure S2 and S3 show, respectively, the FTIR and <sup>1</sup>H NMR spectra of  $[Bmim][BF_4]$  obtained before and after the ionic liquid (IL) be exposed to 115 atm and 255 °C for 60 min (but not in presence of PET). These spectra help the analysis of the stability of  $[Bmim][BF_4]$  under supercritical ethanol (scEtOH) used for PET depolymerisation. Figures S2 and S3 indicated that  $[Bmim][BF_4]$  was chemically stable when exposed to these T and P conditions for 60 min. Thus, no changes were observed in the  $[Bmim][BF_4]$  demonstrating that the LI actuates as catalyst in the PET depolymerisation under scEtOH. Joining to Fig. S1 it can be pointed out that the  $[Bmim][BF_4]$  can be recovered and reused in a further PET depolymerisation reaction.