Supporting Information for:

Production of Poly (Lactic Acid) Macromonomers in scCO₂ with Well-Defined Molecular Structure

Raffaele Ferrari¹, Claudio Maria Pecoraro², Giuseppe Storti³ and Davide Moscatelli^{1,*}

¹Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milano, Italy. ²Dipartimento di Ingegneria Chimica, Gestionale, Informatica e Meccanica, University of Palermo, Viale delle Scienze Ed. 6, 90128, Palermo, Italy. ³Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland

Corresponding author: davide.moscatelli@polimi.it

Figure S1. ¹H-NMR spectrum of Figure 2a with the peak integrals.

Figure S2. TGA thermogram of HEMA-LA₆ produced in scCO₂ at 90 °C for 4 days.

Figure S3. FT-IR spectra of HEMA and HEMA-LA₈ produced in scCO₂ at 90°C, 4 days.

FT-IR analysis has been carried out in order to provide a further evidence of the macromonomer formation. A comparison between the spectra of HEMA and HEMA-LA₈ is shown in **Figure S3**. The increase of the signal in the region of 1700 cm⁻¹ is clearly visible, indicating a significant increase of the amount of ester bonds compared to HEMA, thus proving the addition of lactic acid units. Moreover, the region of the vinyl bond stretching does not show differences between the two compounds, proving the effective retaining of HEMA double bond after ROP reaction.

MALDI-TOF analyses

The main signals revealed from MALDI-TOF, and their comparison with the theoretical one are reported in **Table 2**, while the details of the spectra reported in **Figure 5** are listed here in **Figure S**(4-5).

Figure S4. Mass list of MALDI-TOF for: (a) HEMA-LA₈ macromonomer produced at 130°C, 6h (**Figure 5a**), (b) HEMA-LA₈ macromonomer produced at 90°C, 72h (**Figure 5b**). Examples of isotopic distributions determined using the freeware mMass [Strohalm, M.; Kavan, D.; Novák, P.; Volný M.; Havlíček V.; *Analytical Chemistry* **2010**, *82*, 4648-4651] of selected macromonomers are reported on the right side.

Figure S5. MALDI-TOF of HEMA-LA₆ macromonomer produced in scCO₂ at (a) 130 °C, 6h and (b) 90°C, 72h.

ESI analyses

19

Figure S6. Mass list of HEMA-LA₈ ESI for: (a) macromonomer produced at 130°C, 6h (**Figure 6a**), (b) macromonomer produced at 90°C, 72h (**Figure 6b**). Examples of isotopic distribution determineds using the freeware mMass [Strohalm, M.; Kavan, D.; Novák, P.; Volný M.; Havlíček V.; *Analytical Chemistry* **2010**, *82*, 4648-4651] of selected macromonomers are reported on the right side; sodiated distribution are reported although species ionized with [NH₄]⁺ cation are also present.

Table S1. MALDI-TOF characterization of the macromonomers produced at the optimum reaction time.

			MALDI-TOF		
macromonomer	Temp.	Time	M_n	M_w	M_w/M_n
	[°C]	[h]	[Da]	[Da]	
HEMA-LA ₈	130	6	845	886	1.06
HEMA-LA ₈	110	18	844	903	1.07
HEMA-LA ₈	90	72	725	775	1.06
HEMA-LA ₆	130	6	697	728	1.05
HEMA-LA ₆	110	18	590	627	1.07
HEMA-LA ₆	90	72	581	614	1.05