Supporting Information

Substrate and catalytic promiscuity of secondary metabolite enzymes: O-prenylation of hydroxyxanthones with different prenyl donors by a bisindolyl benzoquinone C-and N-prenyltransferase

Sylwia Tarcz,^a Xiulan Xie^b and Shu-Ming Li*^a

^a Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Deutschhausstrasse 17A, 35037 Marburg, Germany

^b Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany

* Correspondence: shuming.li@staff.uni-marburg.de

Table S1. Sequence identities of AstPT and homologues.	S3
Table S2. ¹ H NMR data of 1a and enzyme products 1b-1d , (CD ₃) ₂ CO, 500 MHz	S3
Table S3. ¹ H NMR data of 2a and enzyme products 2b1-2d2 , (CD ₃) ₂ CO, 500 MHz	S4
Table S4. ¹ H NMR data of 3a and enzyme products 3b1 and 3b2 , (CD ₃) ₂ CO, 500 MHz	S5
Table S5. ¹ H NMR data of 4a and enzyme products 4c and 4d , (CD ₃) ₂ CO, 500 MHz	S6
Figure S1. HPLC chromatograms of incubation mixtures of XptB with AQ D and 1,7-	~-
dihydroxy-6-methyl-8-hydroxymethylxanthone	S7
Figure S2. ¹ H NMR spectrum of 1a in (CD ₃) ₂ CO (500 MHz)	S8
Figure S3. ¹ H NMR spectrum of 1b in (CD ₃) ₂ CO (500 MHz)	S8
Figure S4. ¹ H NMR spectrum of 1c in (CD ₃) ₂ CO (500 MHz)	S9
Figure S5. ¹ H NMR spectrum of 1d in (CD ₃) ₂ CO (500 MHz)	S9
Figure S6. ¹ H NMR spectrum of 2a in (CD ₃) ₂ CO (500 MHz)	S10
Figure S7. ¹ H NMR spectrum of 2b1 and 2b2 in (CD ₃) ₂ CO (500 MHz).	S10
Figure S8. ¹ H NMR spectrum of 2c1 and 2c2 in (CD ₃) ₂ CO (500 MHz)	S11
Figure S9. ¹ H NMR spectrum of 2d1 and 2d2 in (CD ₃) ₂ CO (500 MHz)	S11
Figure S10. ¹ H NMR spectrum of 3a in (CD ₃) ₂ CO (500 MHz)	S12
Figure S11. ¹ H NMR spectrum of 3b1 and 3b2 in (CD ₃) ₂ CO (500 MHz)	S12
Figure S12. ¹ H NMR spectrum of 4a in (CD ₃) ₂ CO (500 MHz)	S13
Figure S13. ¹ H NMR spectrum of 4c in (CD ₃) ₂ CO (500 MHz)	S13
Figure S14. ¹ H NMR spectrum of 4d in (CD ₃) ₂ CO (500 MHz)	S14
Figure S15. HMBC spectrum of 1d in (CD ₃) ₂ SO.	S14
Figure S16. HMBC correlations of 1d .	S15
Figure S17. Determination of kinetic parameters for 1a	S15
Figure S18. Determination of kinetic parameters for 2a	S16
Figure S19. Determination of kinetic parameters for 3a	S16
Figure S20. Determination of kinetic parameters for 4a	S16
Figure S21. Determination of kinetic parameters for DMAPP.	S16
Figure S22. Determination of kinetic parameters for GPP.	S16
Figure S23. Determination of kinetic parameters for FPP	S18
Figure S24. Multiple sequence alignment of AstPT and homologues by Clustal Omega	S19

Table S1. Sequence identities of AstPT and homologues.

						-		
Enzyme	TdiB	AstPT	XptB	FgaPT2	FtmPT1	7-DMATS	AnaPT	CdpNPT
CdpNPT	25	24	24	31	28	25	32	100
AnaPT	26	23	26	31	30	30	100	
7-DMATS	23	26	27	31	26	100		
FtmPT1	20	23	26	36	100			
FgaPT2	26	25	27	100				
XptB	25	23	100					
AstPT	45	100						
TdiB	100							

Sequence identities are given in percentage. TdiB (ABU51603.1) and XptB (BN001302.1) are from *Aspergillus nidulans*, AstPT (EAU29429.1) from *Aspergillus terreus*, FgaPT2 (AAX08549.1), FtmPT1 (AAX56314.1), 7-DMATS (ABS89001.1) and CdpNPT (ABR14712.1) are from *Aspergillus fumigatus*, AnaPT (EAW16181.1) is from *Neosartorya fischeri*.

Compound								
	$3 \xrightarrow{4} 0^{-5} \xrightarrow{11}$							
	1a: R= H	1b: R=	1c: R=	1d: R=				
		5' 1' 1' 2' 2' 4'	9' 10' 1' 5' 8'	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Proton	δ н, mult., <i>J</i>	δн, mult., <i>J</i>	δн, mult., <i>J</i>	δ _H , mult., <i>J</i>				
OH-1	12.83, s	12.82, s	12.82, s	12.82, s				
2	6.74, dd, 8.3, 0.9	6.77, dd, 8.3, 0.9	6.77, dd, 8.3, 0.8	6.77, dd, 8.3, 0.9				
3	7.67, t, 8.3	7.69, t, 8.3	7.69, t, 8.3	7.69, t, 8.3				
4	6.98, dd, 8.3, 0.9	7.01, dd, 8.3, 0.9	7.01, dd, 8.3, 0.8	7.01, dd, 8.3, 0.9				
5	7.40, q, 0.9	7.46, q, 0.8	7.46, br s	7.46, br s				
OH-7	12.83, s	-	-	-				
8	7.58, s	7.57, s	7.57, s	7.56, s				
11	2.37 , d, 0.9	2.39, d, 0.8	2.39, s	2.39, d, 0.8				
1	-	4.75, d, 6.6	4.78, d, 6.7	4.79, d, 6.5				
2	-	5.54, t, 6.6	5.54, td, 6.5, 1.2	5.53, td, 6.4, 1.2				
4	-	1.83, br s ^a	2.14, m	2.15, m				
5	-	1.81, br s ^a	2.14, m	2.15, m				
6	-	-	5.11, t, 6.6	5.13, t, 6.6				
8	-	-	1.62, br s ^b	2.02, m				
9	-	-	1.85, s	2.02, m				
10	-	-	1.59, s ^b	5.03, t, 7.0				
12′	-	-	-	1.62, br s ^c				
13´	-	-	-	1.86, s				
14´	-	-	-	1.60, s				
15´	-	-	-	1.55, s ^c				

Table S2. ¹H NMR data of 1a and enzyme products 1b-1d, (CD₃)₂CO, 500 MHz.

J values are given in Hz. a-c: Signals with same letters are interchangeable.

Compound	PH O = 0 $R_1O = 4$ $O = 5$ OR_2							
	2a	2b1	2b2	2c1	2c2	2d1	2d2	
	$R_1 = R_2 = H$	R ₁ =	K2=	R1=	R ₂ =	K1=	K2=	
Proton	δ _H , mult., <i>J</i>	δ _H , mult., <i>J</i>	δ _H , mult., <i>J</i>	δ _H , mult., <i>J</i>	δ _H , mult., <i>J</i>	δ _H , mult., <i>J</i>	δ _H , mult., <i>J</i>	
OH-1	13.12, s	-	13.06, s	13.03, s	-	13.05, s	-	
2	6.23, d, 2.2	6.29, d, 2.3	6.24, d, 2.1	6,10, d, 2,0	6.21, d, 2.2	6.19, d, 2.1	6.25, d, 2.3	
OH-3	13.12, s	-	13.06, s	-	-	-	-	
4	6.39, d, 2.2	6.49, d, 2.3	6.41, d, 2.1	6.25, d, 2.0	6.42, d, 2.2	6.35, d, 2.1	6.45, d, 2.3	
5	6.88, d, 2.3	6.87, d, 2.2	7.01, s	6.94, s	6.60, d ^d	6.97, d, 2.3	6.76, d, 2.1	
OH-6	13.12, s	-	-	13.03, s	-	13,05, s	-	
7	6.96, dd, 8.7, 2.3	6.95, dd, 8.8, 2.2	7.01, dd, 8.6, 2.4	6.93, dd, 7.9, 2.0	6.74, dd ^d	6.97, dd, 9.5, 2.3	6.87, dd, 8.6, 2.1	
8	8.05, d, 8.7	8.03, d, 8.8	8.07, dd, 8.6, 0.5	8.02, m	7.90, d, 8.7	8.05, d	7.98, d, 9.1	
1	-	4.70, d, 6.5	4.76, d, 6.7	4.76, d, 6.5	4.69, d, 6.8	4.78, d, 6.3	4.72, d, 6.1	
2	-	5.50, t, 6.5	5.53, t, 6.7	5.52, t, 6.5	_ e	5.53, t, 6.3	_ f	
4	-	1.78, s	1.80, s	2.14, m	_ e	2.14, m	_ f	
5	-	1.78, s	1.80, s	2.14, m	_ e	2.14, m	_f	
6	-	-	-	5.11, t, 6.9	_ e	5.13, t, 6.8	_f	
8	-	-	-	1.63, br s ^a	1.57, s ^b	1.94, m	_f	
9´	-	-	-	1.80, br s	1.79, s	1.94, m	_ f	
10	-	-	-	1.59, br s ^a	1.56, s ^b	5.05, t, 7.0	_ f	
12	-	-	-	-	-	1.63, br s °	1.65, s	
13´	-	-	-	-	-	1.81, br s	1.80, d, 1.2	
14	-	-	-	-	-	1.60, br s	1.59, s	
15´	-	-	-	-	-	1.56, br s ^c	1.56,s ^f	

Table S3. ¹H NMR data of 2a and enzyme products 2b1-2d2, (CD₃)₂CO, 500 MHz.

J values are given in Hz. ^{a-c}: Signals with same letters are interchangeable. ^d: Due to low product amount coupling constants could not be determined. ^e: Signals overlap with those of **2c1**. ^f: Signals overlap with those of **2d1**.

Compound		ОН О "				
	2 \bigcirc OR_2					
			Ĭ			
	R₁C	$\sim \sim_0 \sim_0$	6			
	· ·	4 5				
	3a	301	362			
	$K_1 = K_2 = \Pi$	K1=	5'			
		1'				
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2' 4'			
Proton	δн, mult., <i>J</i>	δ _H , mult., <i>J</i>	δн, mult., <i>J</i>			
OH-1	12.99, s	-	12.96, s			
2	6.25, d, 2.1	6.33, d, 2.3	6.28, d, 2.1			
OH-3	12.99, s	-	12.96, s			
4	6.41, d, 2.1	6.53, d, 2.3	6.45, d, 2.1			
5	7.45, d, 9.0	7.47, dd, 9.1, 0.4	7.50, dd, 9.1, 0.4			
6	7.36, dd, 9.0, 3.0	7.38, dd, 9.1, 3.0	7.42, dd, 9.1, 3.1			
OH-7	12.99 s	-	-			
8	7.57, d, 3.0	7.58, d, 3.0	7.60, d, 3.1			
1′	-	4.72, d, 6.9	4.70, d, 6.6			
2	-	5.35, t, 5.2	5.50, t, 6.6			
4	-	1.81 ^a	1.81, s ^a			
5	-	1.79 ^a	1.79, s ^a			

Table S4. ¹H NMR data of 3a and enzyme products 3b1 and 3b2, (CD₃)₂CO, 500 MHz.

J values are given in Hz. ^a: Signals are interchangeable.

Compound	ОН О ОН					
		$RO \stackrel{\circ}{}_{4}O$	5 OH			
	4a	4c	4d			
	R = H	R=	R=			
		9' 10'	13' 14' 15'			
		1' $5'$	3 $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$			
		¹ ² 2' 4' 6' ^{8'}	¹ ¹ ₂ ² ⁴ ⁶ ⁸ 10 ¹²			
Proton	δн, mult., <i>J</i>	δ _H , mult., <i>J</i>	δн, mult., <i>J</i>			
OH-1	11.99, s	-	12.16, s			
2	6.25, d, 2.2	6.33, d, 2.3 ^a	6.28, d, 2.3 ^d			
OH-3	11.99, s	-	-			
4	6.38, d, 2.2	6.51, d, 2.3 ^b	6.46, d, 2.3 ^e			
5	6.38, d, 2.2	6.41, d, 2.1 ^b	6.32, d, 1.9 ^e			
OH-6	11.99, s	-	11.91, s			
7	6.25, d, 2.2	6.26, d, 2.1 ^a	6.18, d, 1.9 ^d			
OH-8	11.99, s	-	12.16, s			
1'	-	4.75, d, 6.6	4.74, d, 6.6			
2'	-	5.50, td, 6.6, 1.4	5.49, td, 6.6, 1.3			
4'	-	2.13, m	2.15, m			
5'	-	2.13, m	2.15, m			
6'	-	5.12, t, 6.9	5.13, t, 7.0			
8'	-	1.64, br s ^c	2.05, m			
9'	-	1.80, br s	2.05, m			
10'	-	1.60, br s ^c	5.06, t, 7.1			
12'	-	-	1.61, br s [†]			
13'	-	-	1.80, br s			
14'	-	-	1.63, br s			
15	-	-	1.56, br s ^f			

Table S5. ¹H NMR data of 4a and enzyme products 4c and 4d, (CD₃)₂CO, 500 MHz.

J values are given in Hz.^{a-f}: Signals with same letters are interchangeable.





Assays with XptB were incubated for 16 h at 37 °C and subsequently extracted three times with ethyl acetate. Chromatograms of incubations with inactivated protein, with DMAPP, GPP and FPP as prenyl donors are shown. Incubation of XptB with 1,7-dihydroxy-6-methyl-8-hydroxymethylxanthone in the presence of DMAPP serves as positive control.



Figure S2. ¹H NMR spectrum of 1a in (CD₃)₂CO (500 MHz).



Figure S3. ¹H NMR spectrum of 1b in (CD3)2CO (500 MHz).



Figure S4. ¹H NMR spectrum of 1c in (CD₃)₂CO (500 MHz).



Figure S5. ¹H NMR spectrum of 1d in (CD₃)₂CO (500 MHz).



Figure S6. ¹H NMR spectrum of 2a in (CD₃)₂CO (500 MHz).



Figure S7. ¹H NMR spectrum of 2b1 and 2b2 in (CD₃)₂CO (500 MHz).



Figure S8. ¹H NMR spectrum of 2c1 and 2c2 in (CD₃)₂CO (500 MHz).



Figure S9. ¹H NMR spectrum of 2d1 and 2d2 in (CD₃)₂CO (500 MHz).



Figure S10. ¹H NMR spectrum of 3a in (CD₃)₂CO (500 MHz).



Figure S11. ¹H NMR spectrum of 3b1 and 3b2 in (CD₃)₂CO (500 MHz).



Figure S12. ¹H NMR spectrum of 4a in (CD₃)₂CO (500 MHz).



Figure S13. ¹H NMR spectrum of 4c in (CD₃)₂CO (500 MHz).





**Figure S15**. HMBC spectrum of **1d** in (CD₃)₂SO.



Figure S16. HMBC correlations of 1d.



Figure S17. Determination of kinetic parameters for 1a.



Figure S18. Determination of kinetic parameters for 2a.

Inhibition occurred and maximal velocity was not reached under our assay conditions.



Figure S19. Determination of kinetic parameters for 3a.



Figure S20. Determination of kinetic parameters for 4a.



Figure S21. Determination of kinetic parameters for DMAPP.



Figure S22. Determination of kinetic parameters for GPP.



Figure S23. Determination of kinetic parameters for FPP.

Inhibition occurred and maximal velocity was not reached under our assay conditions.

FgaPT2	NASSAEAYRVLS	16
7-DMATS	MSIGAEIDSLVPAPQGLNGTAAGYPAKTQKELSNGDFDAHDGLSLAQLTPYDVLT	55
AnaPT	KSLETNGTSNDQQLPWKVLG	37
FtmPT1	HQLQPAPYRALS	23
CdpNPT	MDGEMTASPPDISACDTSAVDEQTGQSGQSQAPIPKDIAYHTLT	44
XptB	GGTSTOAWKVLS	22
TdiB		0
AstPT	MTIH	4
FgaPT2	RAFR-FDNEDQKLWWHSTAPMFAKML-ETANYTTPCQYQYLITYKECVIPSLGCYPTN	72
7-DMATS	AALP-LPAPASSTGFWWRETGPVMSKLL-AKANYPLYTHYKYLMLYHTHILPLLGPRPPL	113
AnaPT	KSLG-LPTIEQEQYWLNTAPYFNNLL-IQCGYDVHQQYQYLAFYHRHVLPVLGPFIRS	93
FtmPT1	ESIL-FGSVDEERWWHSTAPILSRLL-ISSNYDVDVQYKYLSLYRHLVLPALGPYPQR	79
CdpNPT	KALL-FPDIDQYQHWHHVAPMLAKML-VDGKYSIHQQYEYLCLFAQLVAPVLGPYPSP	100
XptB	QTLP-SRGPDVDAWWQLTGRHLAVLL-DAAAYPIEKQYECLLYHYHYAAPYLGPAPRE	78
TdiB	MATEYWSRHLRSVLAPLFAAAGTYSPEDQESHLAFIDEHIAPNLGPLPWE	50
AstPT	${\tt TDLPPPEAKASDTEFWSEHIRSVIGPLMKATGSYSGTAQEANLRFLDNYIAPALGPHPTV}$	64
	: :: * : * * **	
FgaPT2	SAPRWLSILTRYGTPFELSLNCSNSIVRYTFEPINQHTGT-DKDPFN	118
7-DMATS	ENSTHPSPSNAPWRSFLTDDFTPLEPSWNVNGNSEAQSTIRLGIEPIGFEAGA-AADPFN	172
AnaPT	SAEANYISGFSAEG-YPMELSVNYQASKATVRLGCEPVGEFAGT-SQDPMN	142
FtmPT1	DPETGIIATQWRSGMVLTGLPIEFSNNVARALIRIGVDPVTADSGT-AQDPFN	131
CdpNPT	GRDVYRCTLGGN-MTVELSONFORSGSTTRIAFEPVRYQASV-GHDRFN	147
- XptB	GASPPTWKSMLOLDGTPFEFSWKWNN-PGGEPDVRFGLEPIGPMAGT-SLDPLN	130
TdiB	PHGPYSTPSSLVGSPFDPSINIVSSGKAKVRFDFDVISPPDRT-GPDPFA	99
AstPT	AHPTYVAPCTIVGTLFNPSISLSAKGKPTVRFDYDLPLPLDRASSDDPWG	114
	.: * * : *	
FgaPT2	THAIWESLOHLLPLEKSIDLEWFRHFKHDLTLNSEESAFLAHNDRLVGGTIRTONKL	175
7-DMATS	OAAVTOFMHSYEATEVGATLTLFEHFRNDMFVGPETYAALRAKIPEGEHTTOSFL	227
AnaPT	OFMTREVLGRLSRLDPTFDLRLFDYFDSOFSLTTSE-ANLAASKLIKORROSKVI	196
FtmPT1	TTRPKVYLETAARLLPGVDLTRFYEFETELVITKAEEAVLQANPDLFRSPWKSQILT	188
CdpNPT	RTSVNAFFSOLOLLVKSVNIELHHLLSEHLTLTAKDERNLNEEOLTKYLTNFOVKTOYVV	207
XptB	HLAMREILYKLSSAVPGSDLTWTHHFLATLFDHDYAKYTOKAATMGSSIGTSLVY	185
TdiB	EGSAREILHRLADL-VGADTOWMGYLMDALYLTPAEAEVAKTKLPPGVAIPPSSV	153
AstPT	EGKARTLFRRLAAA-LGADTOWLEYFMARLFLSPAETEALRSKIPADLVIPSAMV	168
FgaPT2	ALDIKDGRFALKTYTYDALKAVVTGKTTHELVFGSVRRLAVREDRTLPPLNMLEEYTRS	234
7-DMATS	AFDL-DAGRVTTKANFFPILMSLKTGOSTTKVVSDSILHLALKSGVWGVOTIAAMSVMEA	286
AnaPT	AFDL-KDGAIIPKANFFLKGKSLASGIPVODVAFNAIESIAPKOIESPLRVLRTFVTK	253
FtmPT1	AMDLOKSGTVLVKAYFYPOPKSAVTGRSTEDLLVNAIRKVD-REGRFETOLANLORYIER	247
CdpNPT	ALDL-RKTGIVAKENFFPGIKCAATGOTGSNACFGAIRAVDKDGHLDSLCOLIEA	261
XptB	SLEE-ORKSTGLKTYFHPRKLDOOAFLDIPSWEA	218
TdiB	GEDE-DGPERTIKENTPSVRKALATGODVSELMLKTLRGLOPLGSELVPAMDLTAS	208
AstPT	GVAF-DDAOPRIKAWVPTMRRATI.EGRSSNETAVEVI.RGI.SPI.GSETTPATDMVEA	223
	: *:.	225
FgaPT2		265
7-DMATS		310
AnaDT		286
Ftmpr1		200
CdpNPT		200
Xn+B		292
TdiB	סד הכשמת שייישי איישייש איישיישי איישי איישי VI.CTB	210
Agt DT		244
ABUF 1		200

**Figure S24.** Multiple sequence alignment of AstPT and homologues by Clustal Omega. Identical amino acids in all proteins are marked with an asteriks. Identical amino acids which stabilise the substrates in the active site are highlighted by black boxes. TdiB (ABU51603.1) and XptB (BN001302.1) are from *Aspergillus nidulans*, AstPT (EAU29429.1) from *Aspergillus terreus*, FgaPT2 (AAX08549.1), FtmPT1 (AAX56314.1), 7-DMATS (ABS89001.1) and CdpNPT (ABR14712.1) are from *Aspergillus fumigatus*, AnaPT (EAW16181.1) is from *Neosartorya fischeri*.

FgaPT2	MVSLEAMEDLWTLGGRRRDASTLEGLSLVRELWDLIQLSPGLKS-YPAPYLPLG	318
7-DMATS	HTSLRKVKEAYCLGGRLTDENTKEGLKLLDELWRTVFGIDDEDAELP	366
AnaPT	OLSLATLREFWTLGGSVTDSATMKGLEIAEELWRILOYDDAVCSH	331
FtmPT1		353
CdpNPT	LVTLARAEEHWTLGGRLTDEDAAVGLEIIRGLWSELGIIQGPLEPSA	339
XptB	HTNFRAIREIMTLGGRIADTETRTKQFSELFNLLKTVTEEHADFPETSEFPYVPNNGD	328
TdiB	SNSFAVVRDVLTLGGRLSDDTSLKRVETLKSVWPLLINELEGPOSDAATMDESWSKPE	302
AstPT	KNSWATVQDVMTLGGRLDDEPTRKQLALLRKIWPYLINEPDNTRIADENWCKPE	310
	: :** * : .: :	
	_	
FgaPT2	-VIPDE-RLPLMANFTLH-QNDPVPEPQVYFTTFGMNDMAVADALTTFFERRG	368
7-DMATS	-Q-NSHRTAGTIFNFELR-PGKWFPEPKV <mark>Y</mark> LPVRHYCESDMQIASRLQTFFGRLG	418
AnaPT	SNMDQLPLVVNYELS-SGSATPKPQL <mark>Y</mark> LPLHGRNDEAMANALTKFWDYLG	380
FtmPT1	-KSSAGFEAPMMFHFHLDGSQSPFPDPQM <mark>Y</mark> VCVFGMNSRKLVEGLTTFYRRVG	405
CdpNPT	-M-MEKGLLPIMLNYEMK-AGQRLPKPKL <mark>Y</mark> MPLTGIPETKIARIMTAFFQRHD	389
XptB	SIIPNFADAPDMLKGCVYFFDIA-PGRNLPAIKV <mark>Y</mark> FPVRNHCRNDLAVTQNLNRWLESRG	387
TdiB	-RLNRTGYSGIQYTIEIT-PGQAIPDTKI <mark>Y</mark> VPLFQYTDSSEVAERNFESALKKLG	355
AstPT	-RMPRVGFFGLMYSLEIK-PGRPTPEVKL <mark>Y</mark> VPLFQYAESWAIAENNMETVLKLLD	363
	: * :: <del>*</del> . :	
		400
FgaP12		420
/-DMATS		4/1
Anapr		433
FUMPTI	WEEMASHYQANFLANYPDEDFEKAAHLCAYVSFAYK-NGGAYVTLYNHSFNPV	457
CapNPT	MPEQAEVFMENLQAYYEGKNLEEATRYQAWLSFAYTKEKGPMLSIMYFWPE	440
XptB		440
TaiB	NEWGLSG-KYRSVMQE1FKDVENYGQTYASFSYTEGKGVYTTSYVAMP1KDEGGGS	410
ASTPT	IDWGHSG-KYRQAMEMIFGKGNSYGQIFVAYSYSERIGGMINSMVSMPVKDVPAHA	418
	· · · · · · · · · · · · · · · · · · ·	
FgaPT2	DWAVANLSESKVKCODAACOPTALPPDLSKTGVYYSGLH 459	
7-DMATS	T 472	
AnaPT	KGNL 437	
FtmPT1	GDVSFPN 464	
CdpNPT	440	
XptB	SGRLTHRRA-TRRRGDDRW 458	
TdiB	LAGDFGFRN 419	
AstPT	FTGDYV 424	

Figure S24. Continued.