## Directly hydrothermal growth of ultrathin MoS<sub>2</sub> nanostructured films as high performance counter electrodes for dye-sensitised solar cells

Mohammad Al-Mamun,<sup>a</sup> Haimin Zhang,<sup>\*a</sup> Porun Liu,<sup>a</sup> Yun Wang,<sup>a</sup> Jun Cao<sup>a,c</sup> and

Huijun Zhao\*<sup>*a,b*</sup>

<sup>a</sup> Centre for Clean Environment and Energy, Griffith University, Gold Coast Campus, QLD

4222, Australia

<sup>b</sup> Centre for Environmental and Energy Nanomaterials, Institutes of Solid State Physics,

Chinese Academy of Sciences, Hefei 230031, China

<sup>c</sup> Student Office, Qingdao University, Qingdao 266071, China

E-mail: <u>h.zhao@griffith.edu.au; haimin.zhang@griffith.edu.au;</u> Fax: +61-7 55528067; Tel:

+61-7 55528261

**Table S1** A partial literature review of the DSSCs performance assembled with  $MoS_2$  based counter electrodes.

| Counter<br>Electrodes      | PCEs (%)<br>composite | PCEs (%)<br>Pure MoS <sub>2</sub> | PCEs (%)<br>Pt | Thickness<br>(µm) | T<br>(%) | Refs.         |
|----------------------------|-----------------------|-----------------------------------|----------------|-------------------|----------|---------------|
| MoS <sub>2</sub>           |                       | 7.59                              | 7.64           | 20                | Opaque   | 1             |
| MoS <sub>2</sub> /graphene | 5.98                  | _                                 | 6.23           | 6                 | Opaque   | 2             |
| MoS <sub>2</sub> /graphene | 6.04                  | 5.09                              | 6.38           | 4                 | Opaque   | 3             |
| MWCNT/MoS <sub>2</sub>     | 6.45                  | 4.99                              | 6.41           | 20                | Opaque   | 4             |
| MoS <sub>2</sub> –C        | 7.69                  | 5.36                              | 6.74           | 12                | Opaque   | 5             |
| MoS <sub>2</sub> -GNS      | 5.81                  | 4.15                              | 6.24           | 0.25-3.0          | 0-70     | 6             |
| $MoS_2$                    | —                     | 7.01                              | 7.31           | 0.1               | —        | 7             |
| MoS <sub>2</sub> /GF       | 6.07                  | 4.10                              | 6.41           | 6                 | Opaque   | 8             |
| $MoS_2$                    | —                     | 5.41                              | 6.58           | 0.4               | >80      | 9             |
| $MoS_2$                    | —                     | 7.41                              | 7.13           | 0.49              | 56       | Present study |

| CEs       | V <sub>oc</sub><br>(mV) |          | J <sub>sc</sub><br>( <i>mA</i> cm <sup>-2</sup> ) |            | η<br>(%)             |           | FF<br>(%)            |           |
|-----------|-------------------------|----------|---------------------------------------------------|------------|----------------------|-----------|----------------------|-----------|
| MS-150-7  | 691<br>689<br>692       | 690±1.52 | 13.92<br>13.82<br>13.95                           | 13.89±0.07 | 3.70<br>3.60<br>3.71 | 3.67±0.06 | 38.5<br>37.9<br>39.2 | 38.5±0.65 |
| MS-150-14 | 702<br>703<br>702       | 702±0.58 | 15.17<br>15.21<br>15.16                           | 15.18±0.02 | 4.97<br>4.99<br>4.95 | 4.97±0.02 | 46.7<br>46.9<br>45.8 | 46.5±0.59 |
| MS-150-28 | 698<br>690<br>701       | 696±5.69 | 18.37<br>18.40<br>17.97                           | 18.24±0.24 | 7.41<br>7.40<br>7.38 | 7.40±0.02 | 57.8<br>57.2<br>56.5 | 57.2±0.65 |
| MS-150-42 | 673<br>679<br>670       | 674±4.58 | 13.44<br>13.45<br>13.35                           | 13.41±0.06 | 4.96<br>4.95<br>4.90 | 4.94±0.03 | 54.9<br>54.2<br>53.8 | 54.3±0.58 |
| MS-120-28 | 708<br>709<br>709       | 709±0.58 | 14.25<br>14.30<br>14.00                           | 14.18±0.16 | 5.52<br>5.54<br>5.49 | 5.52±0.03 | 54.8<br>55.1<br>54.0 | 54.6±0.57 |
| MS-180-28 | 709<br>708<br>710       | 709±1.00 | 16.33<br>16.10<br>15.95                           | 16.13±0.19 | 7.15<br>7.10<br>7.12 | 7.12±0.03 | 61.7<br>60.2<br>61.1 | 61.0±0.75 |
| MS-210-28 | 709<br>709<br>708       | 709±0.58 | 12.76<br>12.05<br>12.95                           | 12.59±0.47 | 5.47<br>5.42<br>5.48 | 5.45±0.03 | 60.5<br>58.2<br>60.7 | 59.8±1.39 |
| Pt        | 722<br>729<br>718       | 723±5.57 | 16.78<br>15.90<br>16.98                           | 16.55±0.57 | 7.13<br>7.09<br>7.19 | 7.13±0.05 | 58.8<br>57.2<br>56.9 | 57.6±1.02 |

**Table S2** Photovoltaic parameters of three parallel DSSCs prepared by various  $MoS_2$ -basedcounter electrodes showing the average values with standard deviation.



Fig. S1 Surface SEM images of  $MoS_2$  samples prepared with fixed precursor molar ratio of 1:28 at different reaction temperatures. (A) 120 °C, (B) 180 °C and (C) 210 °C.



Fig. S2 Survey XPS spectra of  $MoS_2$  film prepared at 150 °C under the reaction precursor molar ratio of 1:28.



Fig. S3 Photocurrent-voltage curves of DSSCs assembled with different  $MoS_2$  counter electrodes prepared under different hydrothermal reaction temperatures at fixed precursor molar ratio of 1:28.



**Fig. S4** Cyclic voltammograms (CVs) of MoS<sub>2</sub> electrodes prepared at different hydrothermal reaction temperatures with fixed precursor molar ratio of 1:28.



Fig. S5 A consecutive 100 cyclic voltammograms (CVs) for  $I_3^-/I^-$  redox system using MS-150-28 electrode at a scan rate of 100 mV s<sup>-1</sup>.



Fig. S6 Tafel polarisation curves of  $MoS_2$  electrodes prepared at different hydrothermal reaction temperatures with fixed precursor molar ratio of 1:28.



Fig. S7 Nyquist plots of the dummy cells fabricated with two identical  $MoS_2$  electrodes prepared at different hydrothermal reaction temperatures with fixed precursor molar ratio of 1:28. Symbols represent the experimental data and solid lines represent the model fitting.

## References

- M. Wu, Y. Wang, X. Lin, N. Yu, L. Wang, L. Wang, A. Hagfeldt and T. Ma, *Phys. Chem. Chem. Phys.*, 2011, 13, 19298.
- 2. G. Yue, J.Y. Lin, S.Y. Tai, Y. Xiao and J. Wua, *Electrochim. Acta*, 2012, **85**, 162.
- C.J. Liu, S.Y. Tai, S.W. Chou, Y.C. Yu, K.D. Chang, S. Wang, F. S.S. Chien, J.Y. Lin and T.W. Lin, *J. Mater. Chem.*, 2012, 22, 21057.
- S.Y. Tai, C.J. Liu, S.W. Chou, F. S.S. Chien, J.Y. Lin and T.W. Lin, *J. Mater. Chem.*, 2012, 22, 24753.
- G. Yue, J. Wu, Y. Xiao, M. Huang, J. Lin and J.Y. Lin, J. Mater. Chem. A, 2013, 1, 1495.
- 6. J.Y. Lin, C.Y. Chan and S.W. Chou, *Chem. Commun.*, 2013, 49, 1440.
- S. A. Patil, P. Y. Kalode, R. S. Mane, M. M. M. Sung, S. B. Ambade and S. H. Han, *Dalton Trans.*, 2014, 43, 5256.
- 8. J.Y. Lin, G. Yue, S.Y. Tai, Y. Xiao, H.M. Cheng, F.M. Wang and J. Wu, *Mater*. *Chem. Phys.*, 2013, **143**, 53.
- 9. G. Li, B. Lei and X. Gao, J. Mater. Chem. A, 2014, 2, 3919.