Supplementary materials

NMR protocol

From the possible nucleus (${}^{13}C$, ${}^{1}H$, ${}^{15}N$, ${}^{33}S$ and ${}^{19}F$) available in the moieties under study, ${}^{1}H$ and ${}^{19}F$ have the best response in NMR^{1, 2} and were thus selected. All spectra were recorded on a Bruker 300MHz located at the Institut de Chimie, Strasbourg University, France, with a probe 5 mm QNP 1H/13C/31P/19F Z-GRD. For C₁C₄im⁺ and C₁C₁₀im⁺ determination, we chose sodium citrate as the internal standard^{2, 3} because its protons are well separated from those of the IL cation under investigation. For Me₃BuN⁺ we chose sodiumpotassium tartrate² as internal standard. Sodium trifluoroacetate⁴ was used as standard for Tf₂N⁻ determination. The standards were introduced together with the sample in the NMR tube.

In order to perform a reliable quantitative determination of concentrations, it is very important that all spins have relaxed in between two excitation pulses. The longitudinal relaxation times, T1, for ¹H and ¹⁹F samples and standards should thus be carefully determined as a function of the chemical conditions that may influence their values. However, no NMR signal could be obtained above $[D^+][NO_3^-] = 3$ M so that we performed the T1 determinations in pure D_2O (no $[D^+][NO_3^-]$ added) and in 3M $[D^+][NO_3^-]/D_2O$ only. The values displayed in table S1 show that T1 values depend on the nature of the sample, as is well-known. The effect of the varying ionic strength of the samples onto the NMR characteristics is twofold: i) for ¹H, the chemical shifts are markedly displaced downwards as [D⁺][NO₃-]_{init} is increased (from 7.3 ppm to 6.4 ppm), while this effect is almost negligible for ¹⁹F. ii) the relaxation times T1 are a decreasing function of $[D^+][NO_3^-]_{init}$. Considering these values, in order to avoid artificial distortions of the signal intensities⁵ and to limit the acquisition time, the NMR spectra were recorded with a 30° excitation pulse. All acquisition parameters are indicated in table S2. For ¹H NMR, the spectral window was 0 to 15 ppm, while for ¹⁹F it was centred at -80 ppm, with a width of 80 ppm, to limit background acquisition. Data processing included apodization with an exponential broadening of 1 Hz, phase and baseline corrections. Linearity was checked (correlation coefficient above 0.99) for both ¹H and ¹⁹F by adding known amounts of [Me₃BuN⁺][Br⁻], [C₁C₄im⁺][Cl⁻], [C₁C₁₀im⁺][Cl⁻]] and $[Li^+][Tf_2N^-]$ in pure D₂O and D₂O/ $[D^+][NO_3^-]$ (3M).

Concentrations were calculated using the analyte peak integration, including the peaks due to the ¹³C-¹H or ¹³C-¹⁹F couplings (C₁C₄im⁺: B protons, $\delta = 7.4$ to 6.4 ppm; C₁C₁₀mim⁺: same B protons, $\delta = 7.0$ to 7.9 ppm; Me₃BuN⁺ : C protons, $\delta = 1.7$ to 0.7 ppm ; Tf₂N⁻: $\delta = -79$ ppm,⁶ see scheme 1 for proton attribution) and the internal standard peak integration, each corrected from the number of contributing nuclei, taking advantage of the formula given in ⁷. Purity of the standards was taken into account in the calculations. With this protocol, the uncertainty on the cation concentrations is equal to 10% and to 5% for anions, with detection limits equal to 1 mM for each compound.

Cations/anions	T_1 in pure $D_2O(s)$	T_1 in 3M DNO ₃ /D ₂ O (s)	
C ₁ C ₄ mim ⁺ protons B	$6.06 \pm 0.28 \ (\delta = 7.37 \text{ ppm})$	$3.81 \pm 0.30 \ (\delta = 6.44 \text{ ppm})$	
Doublet of doublet	$7.20 \pm 0.37 \ (\delta = 7.33 \text{ ppm})$	$4.09 \pm 0.30 \ (\delta = 6.40 \text{ ppm})$	
C ₁ C ₁₀ mim ⁺ protons B	$3.13 \pm 0.13 \ (\delta = 7.38 \text{ ppm})$	$2.34 \pm 0.15 \ (\delta = 6.38 \text{ ppm})$	
Doublet of doublet	$2.88 \pm 0.11 \ (\delta = 7.38 \text{ ppm})$	$1.80 \pm 0.11 \ (\delta = 6.32 \text{ ppm})$	
Me ₃ BuN ⁺ protons C	$2.06 \pm 0.15 (\delta = 1.67 \text{ ppm})$	$1.82 \pm 0.16 \ (\delta = 0.75 \text{ ppm})$	
sodium citrate 4 protons	$0.653 \pm 0.074 \ (\delta = 2.53 \text{ ppm})$	$0.508 \pm 0.062 \ (\delta = 2.06ppm)$	
Doublet of doublet	$0.627 \pm 0.077 (\delta = 2.44 \text{ ppm})$	$0.498 \pm 0.059 \ (\delta = 1.94 \text{ ppm})$	
sodium-potassium tartrate	5.63 ± 0.13 ($\delta = 4.22$ ppm)	$3.41 \pm 0.13 \ (\delta = 3.83 \text{ ppm})$	
2 protons			
Tf ₂ N ⁻	$2.01 \pm 0.61 \ (\delta = -80.1 \text{ ppm})$	$2.33 \pm 0.23 \ (\delta = -81.7 \text{ ppm})$	
sodium trifluoroacetate	$2.13 \pm 0.19 \ (\delta = -76.5 \text{ ppm})$	$2.55 \pm 0.17(\delta = -78.6 \text{ ppm})$	

Table S1: Values of the relaxation times T_1 . In brackets: chemical shift of the ¹H or ¹⁹F nuclei.

ion	Number of scans	Delay (s)	Record time (s)	Signal recovery (%)
Tf ₂ N ⁻	150	0.45	3	96.5
$C_1C_4mim^+$	32	22	2.7	99.6
$C_1C_{10}mim^+$	32	15	2.7	99.9
Me ₃ BuN ⁺	32	15	2.7	99.9

 Table S2: NMR acquisition parameters with a 30° excitation pulse

Fig. S1: Water amount for (\blacksquare): H₂O/[H⁺][NO₃⁻]/[C₁C₄im⁺][Tf₂N⁻]; (\bullet): D₂O/[D⁺][NO₃⁻]/[C₁C₄im⁺][Tf₂N⁻]. Solid lines are guide for the eye only.

Fig. S2. Variation of the solubility product, $k_s = [C_1C_4im^+][Tf_2N^-]$ for samples S#4 – S#7 as a function of the added ion. (\blacktriangle): $[D^+][NO_3^-] = 2.2$ M, $[C_1C_4im^+][Cl^-]$ added. (\bigtriangleup): $[D^+][NO_3^-] = 2.2$ M, $[Li^+][Tf_2N^-]$ added. (\bigcirc): $[D^+][NO_3^-] = 0.35$ M, $[C_1C_4im^+][Cl^-]$ added. (\bigcirc): $[D^+][NO_3^-] = 0.35$ M, $[Li^+][Tf_2N^-]$ added. Solid and dotted lines are guide for the eye only.

Fig. S3: Predicted variation of D as a function of added $[Li^+][Tf_2N^-]$ salt in case of cation exchange. $[D^+][NO_3^-] = 0.305$ M.

Fig. S4: Predicted variation of D as a function of added $[Li^+][Tf_2N^-]$ salt in case of cation exchange. $[D^+][NO_3^-] = 2.2 \text{ M}.$

References

1. R. K. Harris, E. D. Becker, S. M. C. d. Menezes, R. Goodfellow and P. Granger, *Pure Appl. Chem.*, 2001, **73**, 1795.

- 2. G. F. Pauli, B. U. Jaki and D. C. Lankin, J. Nat. Prod., 2005, 68, 133.
- 3. R. A. d. Graaf and K. L. Behar, Anal. Chem., 2003, 75, 2100.
- 4. T. J. Bell and Y. Ikeda, *Dalton Trans.*, 2011, 40, 10125.
- 5. M. Malet-Martino and U. Holzgrabe, J. Pharm. Biomed. Anal., 2011, 55, 1.

6. C. Gaillard, O. Klimchuk, A. Ouadi, I. Billard and C. Hennig, *Dalton Trans.*, 2012, **41**, 5476.

7. F. Malz and H. Jancke, J. Pharm. Biomed. Anal., 2005, 38, 813.