Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Negishi reaction in BODIPY dyes. Unprecedented alkylation by palladium-catalyzed C–C coupling in boron dipyrromethene derivatives

Gonzalo Duran-Sampedro,^a Eduardo Palao,^a Antonia R. Agarrabeitia,^a Santiago de la Moya,^a Noël Boens^b and María J. Ortiz^{*a}

 ^a Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain. Fax: +34 91 394 4103; Tel: +34 91 394 4309; E-mail: mjortiz@ucm.es
^b Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200f – bus 02404, 3001

Leuven, Belgium.

Table of Contents

General	S2
Synthesis and Characterization of BODIPYs	S 3
Photophysical Properties. Figure S1	S14
¹ H NMR and ¹³ C NMR Spectra of Compounds	S15
GC/MS Chromatogram of 4f/4g, and Corresponding	S26
Mass Spectra	

General

Synthesis: Starting materials and reagents used in the preparation of BODIPYs are commercially available unless synthesis is described. The solvents were dried and distilled before use. Flash column chromatography was performed using silica gel Merck 60 (230-400 mesh). ¹H and ¹³C NMR spectra were recorded on a Bruker Avance-DPX-300 (300 MHz for ¹H and 75 MHz for ¹³C) and Avance III (700 MHz for ¹H and 176 MHz for ¹³C) spectrometers. All spectra were recorded in CDCl₃. ¹H chemical shifts are reported in ppm relative to tetramethylsilane ($\delta = 0.00$ ppm), using the residual solvent signal as the internal reference. ¹³C chemical shifts are reported in ppm with CDCl₃ ($\delta = 77.67$ ppm) as the internal standard. Chemical shift multiplicities are reported as s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sext = sextet, dd = double doublet and m = multiplet. IR spectra (in cm⁻¹) were recorded a Bruker Tensor-27-FTIR spectrophotometer. Gas chromatographic analysis was performed on an Agilent GC/MS system (gas chromatograph: 6890N Network; column: DB-5ms; quadrupole mass detector: 5973 MSD). High resolution mass spectra were determined by EI a Thermofisher MAT 95 XP.

BODIPY derivatives 1^{1} , 2^{1} , and 3^{2} , were synthesized by the methods previously described.

Photophysical properties: The photophysical properties were registered in diluted solutions (around 1×10^{-5} M), prepared by diluting a concentrated stock solution in ethyl acetate. UV-Vis absorption and fluorescence spectra were recorded on a Bio-Tek spectrophotometer (model UVIKON XL) and a Sim-Aminco spectrofluorimeter (model Aminco Bowman Series 2), respectively. The fluorescence spectra were corrected from the wavelength dependence of the detector sensibility. A Commercial BODIPY PM546 (4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-*s*-indacene) was used as the reference dye ($\Phi = 0.85$ in AcOEt).³

¹ M. R. Rao, K. V. Pavan Kumar and M. Ravikanth, J. Orgamometallic Chem., 2010, 695, 863-869.

² T. Rohand, M. Baruah, W. Qin, N. Boens and W. Dehaen, Chem. Commun., 2006, 266-268.

³ F. López Arbeloa, J. Bañuelos, V. Martinez, T. Arbeloa and I. López Arbeloa, *Int. Rev. Phys. Chem.*, 2005, **24**, 339-374.

Synthesis and Characterization of BODIPYs

General procedure for Negishi cross-coupling reactions: Method A. To a flame-dried 100 mL two-neck flask were added the halogenated BODIPY (1 equiv), $Pd(PPh_3)_2Cl_2$ (10 mol %) and dry toluene (10 mL) under argon atmosphere. To the reaction mixture was added dropwise R_2Zn or RZnBr (1.1-20 equiv) and the mixture was stirred at room temperature for 5-120 min. The reaction was monitored by TLC. EtOAc was then added, and the solution was washed with 10% aq HCl, saturated aq NaHCO₃ solution and H₂O, dried over MgSO₄, filtered and concentrated to dryness. The compounds were purified by flash chromatography on silica gel.

General procedure for Negishi cross-coupling reactions: Method B. To a flame-dried 100 mL two-neck flask were added (trimethylsilyl)acetylene or phenylacetylene (5-10 equiv) and dry THF (5 mL). Then, BuLi (5-10 equiv) was added dropwise under argon atmosphere at -78°C and the mixture was stirred for 30 min. After this time period, a solution of ZnBr₂ (5-10 equiv) in dry THF (2 mL) was added at -78°C and 5 min later the reaction was allowed to reach room temperature. Then, halogenated BODIPY (1 equiv), Pd(PPh₃)₂Cl₂ (10 mol %) and dry toluene (10 mL) were added at room temperature and the reaction mixture was stirred for 20-60 min. EtOAc was then added, and the solution was washed with 10% aq HCl, saturated aq NaHCO₃ solution and H₂O, dried over MgSO₄, filtered and concentrated to dryness. The compounds were purified by flash chromatography on silica gel.

Synthesis of 3-ethyl-4,4-difluoro-8-(p-tolyl)-4-bora-3a,4a-diaza-s-indacene (4a).

According to the general procedure A, BODIPY **1** (42 mg, 0.117 mmol), Pd(PPh₃)₂Cl₂ (8 mg, 0.012 mmol) in dry toluene (10 mL) and ZnEt₂ (0.14 mL, 1 M in hexane, 0.14 mmol) were reacted for 60 min. Flash chromatography using hexane/EtOAc (98:2) afforded **4a** (24 mg, 64%, as a brown solid), and **1** (6 mg, 15%). ¹H NMR (300 MHz, CDCl₃): δ 7.70 (broad s, 1H, CH), 7.36 (d, *J* = 8.1 Hz, 2H, phenyl), 7.23 (d, *J* = 8.1 Hz,

2H, phenyl), 6.85 (d, J = 4.2 Hz, 1H, CH), 6.72 (d, J = 3.9 Hz, 1H, CH), 6.39 (dd, J = 3.9 and 1.8 Hz, 1H, CH), 6.36 (d, J = 4.2 Hz, 1H, CH), 3.18 (q, J = 7.8 Hz, 2H, CH₂), 2.39 (s, 3H, CH₃), 1.29 (t, J = 7.8 Hz, 3H, CH_3CH_2); ¹³C NMR (75 MHz, CDCl₃): δ 166.8 (C), 145.3 (C), 140.8 (C), 140.4 (CH), 135.5 (C), 133.8 (C), 133.1 (CH), 131.2 (C), 130.5 (CH), 129.1 (CH), 128.6 (CH), 118.8 (CH), 117.0 (CH), 22.3 (CH₂), 21.5 (CH₃), 12.5 (CH₃); IR (neat): 2971, 2924, 1536, 1398, 1351, 1268, 1252, 1121, 1030, 979, 825, 735 cm⁻¹; HRMS-EI: calcd for (C₁₈H₁₇BF₂N₂) 310.1450, found 310.1443.

Synthesis of 3,5-diethyl-4,4-difluoro-8-(p-tolyl)-4-bora-3a,4a-diaza-s-indacene (5a).

According to the general procedure A, BODIPY **2** (50 mg, 0.114 mmol), Pd(PPh₃)₂Cl₂ (8 mg, 0.011 mmol) in dry toluene (10 mL) and ZnEt₂ (0.46 mL, 1 M in hexane, 0.456 mmol) were reacted for 20 min. Flash chromatography using hexane/EtOAc (98:2) afforded $5a^4$ (33 mg, 86%) as a brown solid.

According to the general procedure A, BODIPY **3** (50 mg, 0.142 mmol), $Pd(PPh_3)_2Cl_2$ (10 mg, 0.014 mmol) in dry toluene (10 mL) and $ZnEt_2$ (0.57 mL, 1 M in hexane, 0.568 mmol) were reacted for 120 min. Flash chromatography using hexane/EtOAc (98:2) afforded, by order of elution, **5a**⁴ (35 mg, 73%) and **4c** (5 mg, 10%).

Compound 5*a*: ¹H NMR (300 MHz, CDCl₃): δ 7.30 (d, *J* = 7.8 Hz, 2H, phenyl), 7.19 (d, *J* = 7.8 Hz, 2H, phenyl), 6.68 (d, *J* = 4.2 Hz, 2H, 2CH), 6.26 (d, *J* = 4.2 Hz, 2H, 2CH), 3.00 (q, *J* = 7.5 Hz, 4H, 2CH₂), 2.36 (s, 3H, CH₃), 1.26 (t, *J* = 7.5 Hz, 6H, 2*CH*₃CH₂); ¹³C NMR (75 MHz, CDCl₃): δ 162.2 (C), 142.2 (C), 139.2 (C), 133.2 (C), 130.3 (C), 129.4 (CH), 127.8 (CH), 116.0 (CH), 21.0 (CH₂), 20.4 (CH₃), 11.8 (CH₃); IR (neat): 2953, 2925, 2860, 1553, 1140, 1001 cm⁻¹; HRMS-EI: calcd for (C₂₀H₂₁BF₂N₂) 338.1764, found 338.1759.

⁴ M. Pintado, Ph.D. Thesis, Universidad Complutense de Madrid (Spain), 2009.

Synthesis of 3-bromo-5-ethyl-4,4-difluoro-8-(*p*-tolyl)-4-bora-3a,4a-diaza-*s*-indacene (4b).

According to the general procedure A, BODIPY **2** (50 mg, 0.114 mmol), Pd(PPh₃)₂Cl₂ (8 mg, 0.011 mmol) in dry toluene (10 mL) and ZnEt₂ (0.13 mL, 1 M in hexane, 0.125 mmol) were reacted for 120 min. Flash chromatography using hexane/EtOAc (98:2) afforded, by order of elution, **5a**⁴ (7 mg, 18%), and **4b** (27 mg, 61%, as a brown solid). *Compound 4b*: ¹H NMR (300 MHz, CDCl₃): δ 7.31 (d, *J* = 8.1 Hz, 2H, phenyl), 7.22 (d, *J* = 8.1 Hz, 2H, phenyl), 6.82 (d, *J* = 4.5 Hz, 1H, CH), 6.59 (d, *J* = 3.9 Hz, 1H, CH), 6.39-6.36 (m, 2H, 2CH), 3.03 (q, *J* = 7.5 Hz, 2H, CH₂), 2.38 (s, 3H, CH₃), 1.28 (t, *J* = 7.5 Hz, 3H, *CH*₃CH₂); ¹³C NMR (75 MHz, CDCl₃): δ 167.7 (C), 143.1 (C), 140.9 (C), 135.4 (C), 134.7 (C), 133.1 (CH), 130.5 (CH), 129.1 (CH), 128.8 (CH), 126.9 (C), 120.4 (CH), 119.6 (CH), 22.4 (CH₂), 21.5 (CH₃), 12.7 (CH₃); IR (neat): 2970, 2930, 2878, 1547, 1436, 1319, 1136, 1033, 980 cm⁻¹; HRMS-EI: calcd for (C₁₈H₁₆BBrF₂N₂) 388.0556, found 388.0550.

Synthesis of 3-chloro-5-ethyl-4,4-difluoro-8-(*p*-tolyl)-4-bora-3a,4a-diaza-*s*-indacene (4c).

According to the general procedure A, BODIPY **3** (50 mg, 0.142 mmol), Pd(PPh₃)₂Cl₂ (10 mg, 0.014 mmol) in dry toluene (10 mL) and ZnEt₂ (0.16 mL, 1 M in hexane, 0.156 mmol) were reacted for 40 min. Flash chromatography using hexane/EtOAc (98:2) afforded, by order of elution, **5a**⁴ (4 mg, 8%) and **4c** (37 mg, 75%, as a brown solid). *Compound 4c*: ¹H NMR (300 MHz, CDCl₃): δ 7.30 (d, *J* = 8.1 Hz, 2H, phenyl), 7.22 (d, *J* = 8.1 Hz, 2H, phenyl), 6.81 (d, *J* = 4.5 Hz, 1H, CH), 6.64 (d, *J* = 4.2 Hz, 1H, CH), 6.37 (d, *J* = 4.5 Hz, 1H, CH), 6.26 (d, *J* = 4.2 Hz, 1H, CH), 3.04 (q, *J* = 7.5 Hz, 2H, CH₂), 2.38 (s, 3H, CH₃), 1.28 (t, *J* = 7.5 Hz, 3H, *CH*₃CH₂); ¹³C NMR (75 MHz, CDCl₃):

δ 167.4 (C), 143.5 (C), 140.9 (C), 140.1 (C), 135.3 (C), 133.0 (CH), 133.5 (CH), 129.1 (CH), 128.8 (CH), 119.4 (CH), 116.7 (CH), 22.4 (CH₂), 21.5 (CH₃), 12.7 (CH₃); IR (neat): 2925, 1549, 1438, 1320, 1138, 1034, 984 cm⁻¹; HRMS-EI: calcd for (C₁₈H₁₆BClF₂N₂) 344.1061, found 344.1055.

Synthesis of 3,5-dimethyl-4,4-difluoro-8-(*p*-tolyl)-4-bora-3a,4a-diaza-*s*-indacene (5b).

According to the general procedure A, BODIPY **3** (50 mg, 0.142 mmol), $Pd(PPh_3)_2Cl_2$ (10 mg, 0.014 mmol) in dry toluene (10 mL) and $ZnMe_2$ (2 mL, 1.2 M in toluene, 2.84 mmol) were reacted for 90 min. Flash chromatography using hexane/EtOAc (99:1) afforded **5b**⁵ (35 mg, 80%). Characterization data are in agreement with literature.

Synthesis of 3-chloro-5-methyl-4,4-difluoro-8-(*p*-tolyl)-4-bora-3a,4a-diaza-*s*-indacene (4d).

According to the general procedure A, BODIPY **3** (50 mg, 0.142 mmol), $Pd(PPh_3)_2Cl_2$ (10 mg, 0.014 mmol) in dry toluene (10 mL) and $ZnMe_2$ (0.18 mL, 1.2 M in toluene, 0.213 mmol) were reacted for 60 min. Flash chromatography using hexane/EtOAc (99:1) afforded, by order of elution, **4d** (36 mg, 77%, as a brown solid) and **3** (7 mg, 14%).

Compound 4*d*: ¹H NMR (300 MHz, CDCl₃): δ 7.30 (d, *J* = 8.1 Hz, 2H, phenyl), 7.22 (d, *J* = 8.1 Hz, 2H, phenyl), 6.78 (d, *J* = 4.2 Hz, 1H, CH), 6.64 (d, *J* = 4.2 Hz, 1H, CH), 6.28 (d, *J* = 4.2 Hz, 1H, CH), 6.26 (d, *J* = 4.2 Hz, 1H, CH), 2.61 (s, 3H, CH₃), 2.38 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 161.4 (C), 143.3 (C), 140.9 (C), 140.3 (C), 135.5 (C), 133.0 (C), 132.8 (CH), 130.5 (CH), 130.4 (C), 129.1 (CH), 128.8 (CH), 121.4 (CH), 116.7 (CH), 21.4 (CH₃), 15.2 (CH₃); IR (neat): 2958, 2927, 2866, 1550, 1436, 1268, 1081, 1054, 1007, 984 m⁻¹; HRMS-EI: calcd for (C₁₇H₁₄BClF₂N₂) 330.0905, found 330.0899.

⁵ (*a*) Q. Miao, J.-Y. Shin, B. O. Patrick and D. Dolphin, *Chem. Commun.*, 2009, 2541-2543; (*b*) Y. Chen, L. Wan, D. Zhang, Y. Bian and J. Jiang, *Photochem. Photobiol. Sci.*, 2011, **10**, 1030-1038.

Synthesis of 3,5-dibutyl-4,4-difluoro-8-(p-tolyl)-4-bora-3a,4a-diaza-s-indacene (5c).

According to the general procedure A, BODIPY **3** (50 mg, 0.142 mmol), Pd(PPh₃)₂Cl₂ (10 mg, 0.014 mmol) in dry toluene (10 mL) and BuZnBr (5.7 mL, 0.5 M in THF, 2.84 mmol) were reacted for 30 min. Flash chromatography using hexane/EtOAc (98:2) afforded **5c** (29 mg, 52%, as a brown solid). ¹H NMR (700 MHz, CDCl₃): δ 7.32 (d, *J* = 7.7 Hz, 2H, phenyl), 7.21 (d, *J* = 7.7 Hz, 2H, phenyl), 6.68 (d, *J* = 4.2 Hz, 1H), 6.25 (d, *J* = 4.2 Hz, 1H), 2.97 (t, *J* = 7.7 Hz, 4H, 2CH₂), 2.38 (s, 3H, CH₃), 1.67 (quint, *J* = 7.7 Hz, 4H, 2CH₂), 0.90 (t, *J* = 7.7 Hz, 6H, 2*CH*₃CH₂); ¹³C NMR (176 MHz, CDCl₃): δ 162.1 (C), 142.9 (C), 140.1 (C), 134.1 (C), 131.4 (C), 130.4 (CH), 130.2 (CH), 128.9 (CH), 117.6 (CH), 30.7 (CH₂), 28.5 (CH₂), 22.7 (CH₂), 21.4 (CH₃), 14.0 (CH₃); IR (neat): 2957, 2924, 2856, 1573, 1551, 1414, 1336, 1270, 1127, 976, 762 cm⁻¹; HRMS-EI: calcd for (C₂₄H₂₉BF₂N₂) 394.2390, found 394.2385.

Synthesis of 3-butyl-5-chloro-4,4-difluoro-8-(*p*-tolyl)-4-bora-3a,4a-diaza-*s*-indacene (4e).

According to the general procedure A, BODIPY **3** (50 mg, 0.142 mmol), $Pd(PPh_3)_2Cl_2$ (10 mg, 0.014 mmol) in dry toluene (10 mL) and BuZnBr (5.7 mL, 0.5 M in THF, 2.84 mmol) were reacted for 10 min. Flash chromatography using hexane/EtOAc (99.5:0.5) afforded, by order of elution, **5c** (9 mg, 9%) and **4e** (33 mg, 62%, as a brown solid).

 4H, 2CH₂), 0.90 (t, J = 7.7 Hz, 6H, 2*CH*₃CH₂); ¹³C NMR (176 MHz, CDCl₃): δ 165.5 (C), 142.2 (C), 139.8 (C), 138.9 (C), 134.2 (C), 131.9 (C), 131.8 (CH), 129.4 (C and CH), 128.0 (CH), 127.5 (CH), 118.9 (CH), 115.5 (CH), 29.6 (CH₂), 27.8 (CH₂), 21.7 (CH₂), 20.4 (CH₃), 12.9 (CH₃); IR (neat): 2973, 2927, 1571, 1435, 1390, 1327, 1269, 1170, 1044, 989, 735 cm⁻¹; HRMS-EI: calcd for (C₂₀H₂₀BClF₂N₂) 372.1373, found 372.1368.

Synthesis of 3-chloro-4,4-difluoro-5-isopropyl-8-(*p*-tolyl)-4-bora-3a,4a-diaza-*s*-indacene (4f) and 3-chloro-4,4-difluoro-5-propyl-8-(*p*-tolyl)-4-bora-3a,4a-diaza-*s*-indacene (4g).

According to the general procedure A, BODIPY **3** (50 mg, 0.142 mmol), Pd(PPh₃)₂Cl₂ (10 mg, 0.014 mmol) in dry toluene (10 mL) and Zn(iPr)₂ (1.4 mL, 1 M in toluene, 1.4 mmol) were reacted for 50 min. Flash chromatography using hexane/EtOAc (99:1) afforded a 2:1 mixture of **4f** and **4g** (35 mg, 70%, as a brown solid). ¹H NMR (700 MHz, CDCl₃): δ 7.31 (d, *J* = 7.7 Hz, 2H, phenyl-**4f** and **4g**), 7.23 (d, *J* = 7.7 Hz, 2H, phenyl-**4f** and **4g**), 6.83-6.81 (m, 1H, CH-**4f** and **4g**), 6.64 (broad s, 1H, CH-**4f** and **4g**), 6.42 (d, *J* = 4.2 Hz, 0.66H, CH-**4f**), 6.36 (d, *J* = 4.2 Hz, 0.33H, CH-**4g**), 6.27 (m, 1H, CH-**4f** and **4g**), 3.63 (m, 0.66H, CH-**4f**), 2.98 (t, *J* = 7.7 Hz, 0.66H, CH₂-**4g**), 2.39 (s, 3H, CH₃-**4f** and **4g**), 1.73 (sext, *J* = 7.7 Hz, 0.66H, CH₂-**4g**), 1.28 (d, *J* = 6.3 Hz, 4H, 2CH₃-**4f**), 0.99 (t, *J* = 7.7 Hz, 1H, *CH*₃CH₂-**4g**); ¹³C NMR (176 MHz, CDCl₃): δ 172.3 (C), 166.3 (C), 143.5 (C), 143.3 (C), 140.8 (C), 140.7 (C), 140.0 (C), 139.8 (C), 134.7 (C), 133.1 (CH), 132.8 (CH), 130.5 (C), 130.4 (CH), 129.1 (CH), 128.6 (CH), 128.5 (CH₃), 21.9 (CH₂), 21.5 (CH₃), 14.1 (CH₃); GC-MS *m*/*z* (%) **4f**: 358.2 (M⁺, 62), 343.2 (92), 323.1 (100); **4g**: 358.2 (M⁺, 54), 329.2 (100).

Synthesis of 3,5-dibenzyl-4,4-difluoro-8-(*p*-tolyl)-4-bora-3a,4a-diaza-*s*-indacene (5d).

According to the general procedure A, BODIPY **3** (50 mg, 0.142 mmol), Pd(PPh₃)₂Cl₂ (10 mg, 0.014 mmol) in dry toluene (10 mL) and BnZnBr (5.7 mL, 0.5 M in THF, 2.85 mmol) were reacted for 30 min. Flash chromatography using hexane/EtOAc (98:2) afforded **5d** (13 mg, 20%) as a brown solid. ¹H NMR (700 MHz, CDCl₃): δ 7.32-7.19 (m, 14H, phenyl), 6.65 (d, *J* = 4.2 Hz, 2H, 2CH), 6.00 (d, *J* = 4.2 Hz, 2H, 2CH), 4.36 (s, 4H, 2CH₂), 2.36 (s, 3H, CH₃); ¹³C NMR (176 MHz, CDCl₃): δ 160.2 (C), 144.2 (C), 140.4 (C), 137.8 (C), 134.4 (C), 131.2 (C), 130.4 (CH), 129.5 (CH), 128.9 (CH), 128.6 (CH), 126.7 (CH), 118.7 (CH), 35.1 (CH₂), 21.4 (CH₃); IR (neat): 2924, 1572, 1543, 1482, 1431, 1302, 1260, 1112, 981, 885 cm⁻¹; HRMS-EI: calcd for (C₃₀H₂₅BF₂N₂) 462.2075, found 462.2072.

Synthesis of 3-benzyl-5-chloro-4,4-difluoro-8-(*p*-tolyl)-4-bora-3a,4a-diaza-*s*-indacene (4h).

According to the general procedure A, BODIPY **3** (50 mg, 0.142 mmol), Pd(PPh₃)₂Cl₂ (10 mg, 0.014 mmol) in dry toluene (10 mL) and BnZnBr (1.14 mL, 0.5 M in THF, 0.57 mmol) were reacted for 25 min. Flash chromatography using hexane/EtOAc (99:1) afforded **4h** (10 mg, 18%) as a brown solid. ¹H NMR (700 MHz, CDCl₃): δ 7.31-7.22 (m, 9H, phenyl), 6.74 (d, *J* = 4.2 Hz, 1H, CH), 6.68 (d, *J* = 4.2 Hz, 1H, CH), 6.30 (d, *J* = 4.2 Hz, 1H, CH), 6.09 (d, *J* = 4.2 Hz, 1H, CH), 4.36 (s, 2H, CH₂), 2.38 (s, 3H, CH₃); ¹³C NMR (176 MHz, CDCl₃): δ 163.6 (C), 144.0 (C), 141.0 (C), 140.8 (C), 137.0 (C), 135.3 (C), 133.1 (C), 132.5 (CH), 130.5 (CH), 130.4 (C), 129.5 (CH), 129.3 (CH), 129.1

(CH), 128.8 (CH), 126.9 (CH), 120.5 (CH), 117.0 (CH), 35.3 (CH₂), 21.5 (CH₃); IR (neat): 2923, 2854, 1571, 1545, 1532, 1394, 1329, 1216, 1072, 971, 881 cm⁻¹; HRMS-EI: calcd for ($C_{23}H_{18}BCIF_2N_2$) 406.1218, found 406.1211.

Synthesis of 4,4-difluoro-3,5-diphenyl-8-(*p*-tolyl)-4-bora-3a,4a-diaza-*s*-indacene (5e).

According to the general procedure A, BODIPY **3** (50 mg, 0.142 mmol), $Pd(PPh_3)_2Cl_2$ (10 mg, 0.014 mmol) in dry toluene (10 mL) and PhZnBr (5.7 mL, 0.5 M in THF, 2.85 mmol) were reacted for 60 min. Flash chromatography using hexane/CH₂Cl₂ (7:3) afforded **5e**⁶ (34 mg, 56%). Characterization data are in agreement with literature.

Synthesis of 3-chloro-4,4-difluoro-5-phenyl-8-(*p*-tolyl)-4-bora-3a,4a-diaza-*s*-indacene (4i).

According to the general procedure A, BODIPY **3** (50 mg, 0.142 mmol), $Pd(PPh_3)_2Cl_2$ (10 mg, 0.014 mmol) in dry toluene (10 mL) and PhZnBr (5.7 mL, 0.5 M in THF, 2.85 mmol) were reacted for 5 min. Flash chromatography using hexane/EtOAc (98:2) afforded, by order of elution, **5e**⁶ (4 mg, 6%), **4i**⁶ (39 mg, 70%) and **3** (9 mg, 18%). Characterization data are in agreement with literature.

⁶ T. Rohand, W. Qin, N. Boens and W. Dehaen, *Eur. J. Org. Chem.*, 2006, 4658-4663.

Synthesis of 4,4-difluoro-3,5-bis(phenylethynyl)-8-(*p*-tolyl)-4-bora-3a,4a-diaza-*s*-indacene (5f).

According to the general procedure B, phenylacetylene (0.16 mL, 1.42 mmol), BuLi (0.9 mL, 1.6 M hexano, 1.42 mmol), $ZnBr_2$ (320 mg, 1.42 mmol), BODIPY **3** (50 mg, 0.142 mmol) and Pd(PPh₃)₂Cl₂ (10 mg, 0.014 mmol) in dry toluene (10 mL) were reacted for 40 min. Flash chromatography using hexane/EtOAc (98:2) afforded **5f**⁶ (37 mg, 54%). Characterization data are in agreement with literature.

Synthesis of 3-chloro-4,4-difluoro-5-(phenylethynyl)-8-(*p*-tolyl)-4-bora-3a,4a-diaza*s*-indacene (4j).

According to the general procedure B, phenylacetylene (0.08 mL, 0.71 mmol), BuLi (0.45 mL, 1.6 M hexano, 0.71 mmol), ZnBr₂ (160 mg, 0.71 mmol), BODIPY **3** (50 mg, 0.142 mmol) and Pd(PPh₃)₂Cl₂ (10 mg, 0.014 mmol) in dry toluene (10 mL) were reacted for 10 min. Flash chromatography using hexane/CH₂Cl₂ (6:4) afforded, by order of elution, **5f**⁶ (11 mg, 12%) and **4j**⁶ (47 mg, 71%). Characterization data are in agreement with literature.

Synthesis of 4,4-difluoro-8-(*p*-tolyl)-3,5-bis[(trimethylsilyl)ethynyl]-4-bora-3a,4adiaza-*s*-indacene (5g).

According to the general procedure B, trimethylsilylacetylene (0.2 mL, 1.42 mmol), BuLi (0.9 mL, 1.6 M hexano, 1.42 mmol), $ZnBr_2$ (320 mg, 1.42 mmol), BODIPY **3** (50 mg, 0.142 mmol) and Pd(PPh₃)₂Cl₂ (10 mg, 0.014 mmol) in dry toluene (10 mL) were reacted for 60 min. Flash chromatography using hexane/EtOAc (98:2) afforded **5g**⁷ (47 mg, 70%). Characterization data are in agreement with literature.

Synthesis of 3-butyl-4,4-difluoro-5-methyl-8-(*p*-tolyl)-4-bora-3a,4a-diaza-*s*-indacene (5h).

According to the general procedure A, BODIPY **4d** (21 mg, 0.063 mmol), Pd(PPh₃)₂Cl₂ (10 mg, 0.014 mmol) in dry toluene (10 mL) and BuZnBr (1 mL, 0.5 M in THF, 0.5 mmol) were reacted for 90 min. Flash chromatography using hexane/EtOAc (99.5:0.5) afforded **5h** (14.5 mg, 65%) as a brown solid. ¹H NMR (700 MHz, CDCl₃): δ 7.32 (d, *J* = 8.4 Hz, 2H, phenyl), 7.21 (d, *J* = 8.4 Hz, 2H, phenyl), 6.69 (d, *J* = 4.2 Hz, 1H, CH), 6.66 (d, *J* = 4.2 Hz, 1H, CH), 6.26 (d, *J* = 4.2 Hz, 1H, CH), 6.18 (d, *J* = 4.2 Hz, 1H, CH), 2.98 (t, *J* = 7.7 Hz, 2H, CH₂), 2.58 (s, 3H, CH₃), 2.38 (s, 3H, CH₃), 1.67 (quint, *J* = 7.7 Hz, 2H, CH₂), 1.41 (sext, *J* = 7.7 Hz, 2H, CH₂), 0.91 (t, *J* = 7.7 Hz, 3H, *CH*₃CH₂) ; ¹³C NMR (176 MHz, CDCl₃): δ 162.4 (C), 157.0 (C), 142.9 (C), 140.2 (C), 134.4 (C), 134.2 (C), 131.4 (C), 130.5 (CH), 130.4 (CH), 130.1 (CH), 128.9 (CH), 119.1 (CH), 117.7 (CH), 30.8 (CH₂), 28.5 (CH₂), 22.7 (CH₂), 21.4 (CH₃), 14.9 (CH₃), 14.2 (CH₃); IR

⁷ M. R. Rao, S. M. Mobin and, M. Ravikanth, *Tetrahedron*, 2010, **66**, 1728-1734.

(neat): 2923, 2854, 1573, 1549, 1428, 1350, 1267, 1114, 988, 886 cm⁻¹; HRMS-EI: calcd for $(C_{21}H_{23}BF_2N_2)$ 352.1920, found 352.1918.

Photophysical Properties

Figure S1 A selection of the normalized visible absorption spectra and corresponding fluorescence emission spectra of the new compounds in AcOEt.

¹H NMR and ¹³C NMR Spectra of Compounds

 1 H (300 MHz, CDCl₃) and 13 C (75 MHz, CDCl₃) spectra of compound 4a

 ^1H (300 MHz, CDCl₃) and ^{13}C (75 MHz, CDCl₃) spectra of compound 4b

^1H (300 MHz, CDCl_3) and ^{13}C (75 MHz, CDCl_3) spectra of compound 4c

 1 H (300 MHz, CDCl₃) and 13 C (75 MHz, CDCl₃) spectra of compound **4d**

 ^1H (700 MHz, CDCl_3) and ^{13}C (176 MHz, CDCl_3) spectra of compound 5c

 ^1H (700 MHz, CDCl₃) and ^{13}C (176 MHz, CDCl₃) spectra of compounds **4f** and **4g**

 ^1H (700 MHz, CDCl₃) and ^{13}C (176 MHz, CDCl₃) spectra of compound **5d**

^1H (700 MHz, CDCl₃) and ^{13}C (176 MHz, CDCl₃) spectra of compound **4h**

^1H (700 MHz, CDCl_3) and ^{13}C (176 MHz, CDCl_3) spectra of compound **5h**

