Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

> Supporting Information – Roy. Soc. Chem. Adv. # rscadv-0000-00000z © Royal Society of Chemistry

# Force Field for ZIF-8 Flexible Frameworks: Atomistic Simulation on Adsorption, Diffusion of Pure Gases as CH<sub>4</sub>, H<sub>2</sub>, CO<sub>2</sub> and N<sub>2</sub>

Xuanjun Wu<sup>†</sup>, Jin Huang<sup>†</sup>, Weiquan Cai<sup>\*,†</sup> and Mietek Jaroniec<sup>‡</sup>

<sup>†</sup>School of Chemical Engineering, Wuhan University of Technology, Luoshi Road 205#, Wuhan

430070, P. R. China

<sup>‡</sup>Department of Chemistry, Kent State University, Kent, Ohio, 44242, USA

Force field parameters for guest molecules and host framework of ZIF-8 used in this work and the lattice constants for four different initial structures of ZIF-8 are shown in Tables S1-S3. Their six-ring windows are shown in Figure S1.

**Table S1.** Force field parameters for ZIF-8 flexible framework.

| Bond type  | $K_b$ (kcal·mol <sup>-1</sup> ·Å <sup>-2</sup> )          | $b_0\left(\mathring{A} ight)$ |
|------------|-----------------------------------------------------------|-------------------------------|
| C1-C3      | 317.000                                                   | 1.492                         |
| C1-N       | 488.000                                                   | 1.339                         |
| C2-N       | 410.000                                                   | 1.371                         |
| С2-Н2      | 367.000                                                   | 0.929                         |
| C2-C2      | 518.000                                                   | 1.346                         |
| С3-Н3      | 340.000                                                   | 0.959                         |
| Zn-N       | 86.000                                                    | 1.987                         |
| Angle type | $K_{\theta}$ (kcal·mol <sup>-1</sup> ·rad <sup>-2</sup> ) | θ <sub>0</sub> (°)            |
| N-C1-N     | 70.000                                                    | 112.17                        |

| N-C1-C3                    | 70.000                                                  |   | 123.89                    |
|----------------------------|---------------------------------------------------------|---|---------------------------|
| C2-C2-N                    | 70.000                                                  |   | 108.67                    |
| С2-С2-Н2                   | 50.000                                                  |   | 125.67                    |
| N-C2-H2                    | 50.000                                                  |   | 125.66                    |
| С1-С3-Н3                   | 50.000                                                  |   | 109.44                    |
| C1-N-C2                    | 70.000                                                  |   | 105.24                    |
| C1-N-Zn                    | 50.000                                                  |   | 127.50                    |
| C2-N-Zn                    | 35.000                                                  |   | 128.00                    |
| N-Zn-N                     | 10.500                                                  |   | 109.47                    |
| Н3-С3-Н3                   | 35.000                                                  |   | 109.50                    |
| Dihedral type <sup>a</sup> | $K_{\varphi}$ (kcal·mol <sup>-1</sup> )                 | n | <i>φ</i> <sub>0</sub> (°) |
| C2-N-C1-N                  | 4.800                                                   | 2 | 180.0                     |
| C2-N-C1-C3                 | 4.150                                                   | 2 | 180.0                     |
| C1-N-C2-C2                 | 4.800                                                   | 2 | 180.0                     |
| C1-N-C2-H2                 | 4.800                                                   | 2 | 180.0                     |
| N-C2-C2-N                  | 4.000                                                   | 2 | 180.0                     |
| N-C2-C2-H2                 | 4.000                                                   | 2 | 180.0                     |
| Н2-С2-С2-Н2                | 4.000                                                   | 2 | 180.0                     |
| Zn-N-C1-N                  | 0.100                                                   | 2 | 180.0                     |
| Zn-N-C1-C3                 | 0.100                                                   | 2 | 180.0                     |
| Zn-N-C2-C2                 | 0.100                                                   | 2 | 180.0                     |
| N-Zn-N-C1                  | 0.174                                                   | 3 | 0.0                       |
| N-Zn-N-C2                  | 0.174                                                   | 3 | 0.0                       |
| Improper type              | $K_{\psi}$ (kcal·mol <sup>-1</sup> ·rad <sup>-2</sup> ) | n | ψο (°)                    |

| N-C3-C1-N  | 1.100                   | 2           | 180.0            |
|------------|-------------------------|-------------|------------------|
| C2-H2-C2-N | 1.100                   | 2           | 180.0            |
| Atom type  | $E(kcal\cdot mol^{-1})$ | $\Sigma(A)$ | q (e)            |
| Zn         | 0.0787                  | 2.462       | +0.6918          |
| Ν          | 0.0438                  | 3.261       | -0.3879          |
| C1         | 0.0667                  | 3.431       | +0.4291          |
| C2         | 0.0667                  | 3.431       | -0.0839          |
| C3         | 0.0667                  | 3.431       | -0.4526          |
| H2         | 0.0279                  | 2.571       | +0.1128          |
| H3         | 0.0279                  | 2.571       | +0.1325, +0.1306 |

 Table S2. Interaction parameters for various gas molecules.

|                        |              | <i>CO</i> <sub>2</sub> |       |         |
|------------------------|--------------|------------------------|-------|---------|
| Atom type              | <i>є (К)</i> |                        | σ (Å) | q (e)   |
| С                      | 28.129       |                        | 2.757 | 0.6512  |
| 0                      | 80.507       |                        | 3.033 | -0.3256 |
| $d_{C-O}(\text{\AA})$  | 1.149        |                        |       |         |
|                        |              | $N_2$                  |       |         |
| N                      | 36.433       |                        | 3.32  | -0.482  |
| СОМ                    |              |                        |       | 0.964   |
| d <sub>COM-N</sub> (Å) | 0.55         |                        |       |         |
|                        |              | $CH_4$                 |       |         |
| CH <sub>4</sub>        | 148.0        |                        | 3.73  | 0.0     |
|                        |              | $H_2$                  |       |         |

| H <sub>2</sub> | 34.2 | 2.96 | 0.0 |
|----------------|------|------|-----|
|                |      |      |     |

Table S3. Lattice parameters and the pore free volume of various ZIF-8 frameworks.

| ZIF-8 frameworks type | $d_{\text{aperture}}(\text{\AA})$ | $d_{\rm pore}(\AA)$ | <i>lattice constant(Å)</i> | pore volume(cm <sup>3</sup> /g) |
|-----------------------|-----------------------------------|---------------------|----------------------------|---------------------------------|
| $ZIF-8^1$             | 3.4                               | 11.6                | 16.991                     | 0.59                            |
| ZIF8HL <sup>2</sup>   | 3.4                               | 11.6                | 17.070999                  | 0.61                            |
| ZIF8_ja3 <sup>3</sup> | 3.4                               | 11.6                | 17.107269                  | 0.61                            |
| ZIF8_55CH4UC          | 3.4                               | 11.6                | 16.991                     | 0.59                            |

 $d_{\text{pore}}$  is pore diameters, and  $d_{\text{aperture}}$  is pore aperture.



Figure S1. Six-ring windows of (a)ZIF-8 (b) ZIF8HL (c)ZIF8\_ja3 (d)ZIF8\_55CH4UC.

 $N_2$  adsorption isotherms at 77 K and  $CH_4$  adsorption isotherms at 240 K for ZIF-8 are shown in Figures S2-S3, computed by GCMC simulations using the proposed force field in this work and that of Zhang et al.<sup>4</sup> in comparison to the experimental data reported by Zhou et al.<sup>5</sup> and Park et al<sup>1</sup>, respectively.



**Figure S2.** Adsorption isotherms for  $CH_4$  on ZIF-8 at 240 K. The circles refer to the experimental data from Ref. (5)



**Figure S3.** Adsorption isotherms for  $N_2$  on ZIF-8 at 77 K. The circles refer to the experimental data from Ref. (1)

#### REFERENCES

- 1. K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe and O. M. Yaghi, *Proc. Natl. Acad. Sci. U. S. A.*, 2006, 103, 10186-10191.
- 2. S. A. Moggach, T. D. Bennett and A. K. Cheetham, Angew. Chem. Int. Ed., 2009, 48, 7087-7089.
- 3. D. Fairen-Jimenez, S. A. Moggach, M. T. Wharmby, P. A. Wright, S. Parsons and T. Dueren, *J. Am. Chem. Soc.*, 2011, 133, 8900-8902.
- 4. L. Zhang, Z. Hu and J. Jiang, J. Am. Chem. Soc., 2013, 135, 3722-3728.
- 5. W. Zhou, H. Wu, M. R. Hartman and T. Yildirim, J. Phys. Chem. C, 2007, 111, 16131-16137.