Electronic Supporting Information for

Fluorescent and magnetic dual-responsive coreshell imprinting microspheres strategy for recognition and detection of phycocyanin

Zhong Zhang ${ }^{\text {ac }}$, Jinhua Lia ${ }^{\text {a }}$ Junqing Fu ${ }^{\text {ab }}$, Lingxin Chen ${ }^{\text {a* }}$
${ }^{\text {a }}$ Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
${ }^{\text {b }}$ College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
${ }^{c}$ University of Chinese Academy of Sciences, Beijing 100049, China

* Corresponding author. Tel/Fax: +86 5352109130.

E-mail address: lxchen@yic.ac.cn (L. Chen).

Fig. S1 Size distribution of C-MIP obtained by laser particle analyzer.

Fig. S2 (a) Adsorption isotherm of MIPs and NIPs for phycocyanin in aqueous solution, (b) adsorption kinetics of C-MIP, N-MIP and C-NIP for phycocyanin in aqueous solution, (c) adsorption selectivity of C-MIP and C-NIP for phycocyanin, LZM, CEA, and BSA in aqueous solution, and (d) stability and regeneration of the C-MIP and C-NIP for phycocyanin. Experimental conditions: (a) $\mathrm{V}=2.0 \mathrm{~mL}$; mass of polymer, 20 mg ; adsorption time, 12 h . (b) $\mathrm{V}=100 \mathrm{~mL} ; \mathrm{C}_{0}=0.01 \mathrm{mg} / \mathrm{mL}$; mass of polymer, 100 mg . (c) $\mathrm{V}=2.0 \mathrm{~mL} ; \mathrm{C}_{0}=0.5 \mathrm{mg} / \mathrm{mL}$; mass of polymer, 20 mg ; adsorption time, 12 h . (d) $\mathrm{V}=10 \mathrm{~mL} ; \mathrm{C}_{0}=0.02 \mathrm{mg} / \mathrm{mL}$; the mass of polymer, 20 mg ; adsorption time, 3 h .

Fig. S3 Scatchard plots of the C-MIPs.

Fig. S4 Fluorescence microscopy images of particles: (a) C-MIP, (b) C-MIP in the presence of phycocyanin, and (c) bright-field image of (b).

Table S1 Isotherm model parameters for the C-MIP and N-MIP.

Isotherm model	Parameter	C -MIP	N -MIP
Langmuir	$R^{2(\mathrm{a})}$	0.988	0.952
$\left(\frac{C_{e}}{Q_{e}}=\frac{1}{Q_{\max }} C_{e}+\frac{1}{K Q_{\text {max }}}\right)$	$Q_{\max }{ }^{(\mathrm{b})}$	13.61	10.19
	$K_{l}^{(\mathrm{c})}$	0.311	0.352
	R^{2}	0.979	0.940
\quad Freundlich	$K_{f}^{(\mathrm{d})}$	12.01	10.33
$\left(\lg Q_{e}=\frac{1}{n} \lg C_{e}+\lg K_{f}\right)$	$1 / n^{(\mathrm{e})}$	0.467	0.413

${ }^{\text {a }}$ Correlation coefficient.
${ }^{\mathrm{b}}$ Maximum binding capacity, mg/g.
${ }^{\mathrm{c}}$ Langmuir constant.
${ }^{\mathrm{d}}$ Indicative constant for adsorption capacity of the adsorbent.
${ }^{\mathrm{e}}$ Ranging from 0 to 1 , measuring the adsorption intensity or surface heterogeneity.

