Electronic Supporting Information for

Fluorescent and magnetic dual-responsive coreshell imprinting microspheres strategy for recognition and detection of phycocyanin

Zhong Zhang^{ac}, Jinhua Li^a, Junqing Fu^{ab}, Lingxin Chen^{a*}

^a Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai
Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
^b College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China

^c University of Chinese Academy of Sciences, Beijing 100049, China

* Corresponding author. Tel/Fax: +86 535 2109130.

E-mail address: lxchen@yic.ac.cn (L. Chen).

Fig. S1 Size distribution of C-MIP obtained by laser particle analyzer.

Fig. S2 (a) Adsorption isotherm of MIPs and NIPs for phycocyanin in aqueous solution, (b) adsorption kinetics of C-MIP, N-MIP and C-NIP for phycocyanin in aqueous solution, (c) adsorption selectivity of C-MIP and C-NIP for phycocyanin, LZM, CEA, and BSA in aqueous solution, and (d) stability and regeneration of the C-MIP and C-NIP for phycocyanin. Experimental conditions: (a) V =2.0 mL; mass of polymer, 20 mg; adsorption time, 12 h. (b) V =100 mL; $C_0 = 0.01$ mg/mL; mass of polymer, 100 mg. (c) V =2.0 mL; $C_0 = 0.5$ mg/mL; mass of polymer, 20 mg; adsorption time, 12 h. (d) V =10 mL; $C_0 = 0.02$ mg/mL; the mass of polymer, 20 mg; adsorption time, 3 h.

Fig. S3 Scatchard plots of the C-MIPs.

Fig. S4 Fluorescence microscopy images of particles: (a) C-MIP, (b) C-MIP in the presence of phycocyanin, and (c) bright-field image of (b).

Isotherm model	Parameter	C-MIP	N-MIP
Langmuir $\left(\frac{C_e}{Q_e} = \frac{1}{Q_{\max}}C_e + \frac{1}{K_lQ_{\max}}\right)$ Freundlich $\left(\lg Q_e = \frac{1}{n}\lg C_e + \lg K_f\right)$	<i>R</i> ^{2(a)}	0.988	0.952
	$Q_{\max}^{(b)}$	13.61	10.19
	$K_l^{(c)}$	0.311	0.352
	<i>R</i> ²	0.979	0.940
	$K_{f}^{(\mathrm{d})}$	12.01	10.33
	1/n ^(e)	0.467	0.413

 Table S1 Isotherm model parameters for the C-MIP and N-MIP.

^a Correlation coefficient.

^b Maximum binding capacity, mg/g.

^c Langmuir constant.

^d Indicative constant for adsorption capacity of the adsorbent.

^e Ranging from 0 to 1, measuring the adsorption intensity or surface heterogeneity.