Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supplementary Information

Fabrication of Ni-Fe₂O₃ magnetic nanorods and application to the detection of uric acid

R. Suresh¹, *K. Giribabu¹*, *R. Manigandan¹*, *A. Stephen²*, and *V. Narayanan^{1*}* ¹Department of Inorganic Chemistry, University of Madras, Guindy Maraimalai Campus, Chennai 600025, India

²Department of Nuclear Physics, University of Madras, Guindy Maraimalai Campus, Chennai 600025, India

Fig. S1: Plot of anodic peak current of UA versus volume of sample dispersion.

Fig. S2: XRD patterns of (a) Fe_2O_3 , (b) 2%Ni-Fe₂O₃, (c) 5%Ni-Fe₂O₃,

(d) 10%Ni-Fe₂O₃ nanorods in the range of 32.0° - 37.0° .

Fig. S3: Tauc's plot of (a) Fe_2O_3 , (b) 2%Ni-Fe_2O_3, (c) 5%Ni-Fe_2O_3, and (d) 10%Ni-Fe_2O_3 nanorods.

Fig. S4: Cyclic voltammograms of (a) bare, (b) Fe₂O₃/GCE, (c) 2%Ni-Fe₂O₃/GCE,
(d) 5%Ni-Fe₂O₃/GCE, and (e) 10%Ni-Fe₂O₃/GCE in 0.1M PBS at scan rate of 50 mVs⁻¹. Inset Figure: Effect of scan rate on the 5%Ni-Fe₂O₃/GCE.

 $\label{eq:Fig.S5:Nyquist plots of 5 mM K_3[Fe(CN)_6] at (a) bare GCE , (b)Fe_2O_3/GCE, (c)2Ni\%-Fe_2O_3/GCE , (d)5Ni\%-Fe_2O_3/GCE, and (e)10Ni\%-Fe_2O_3/GCE. The frequency range is from 0.5 Hz to 100 kHz. The ac amplitude of 5 mV was applied.$

Fig. S6: Interference test in 0.1 M PBS (pH = 7.4) at 0.47 V with 0.01 mM UA and 1 mM DA.

Fabricated sensor	Sensitivity	Linear range	Detection	Reference
	(μΑμΜ ⁻¹)	(µM)	limit (µM)	
Uricase/MUA-	0.0193	70-630	54.0	[36]
MPA/AuNP/APTES/ITO				
Uricase-Th-SWNTs/GCE	0.090	2-2000	0.5	[37]
Uricase/BS ³ /APTES/ITO	0.039	50-580	37.0	[38]
Nafion/uricase/T-ZnO/Au	0.080	0.8-3490	0.8	[39]
Uricase/Ir-C electrode	0.1101	100-800	10.0	[40]
MWCNT-PEDOT film	-	10-250	10.0	[41]
SnO ₂ /Pt/Ti/glass and ITO/	697.16 μA mM ⁻¹	0.05–1 mM	0.04 mM	[42]
glass electrodes	and		and	
	165.42 μA mM ⁻¹		0.048 mM	
PANI-GO/GCE	2.2	2–18	0.2	[43]
BNDCNPE	-	6.5-752.0	4.28	[44]
5%Ni-Fe ₂ O ₃ /GCE	0.060	6.6-112.4	3.1	This work

 Table. S1: Comparison of the proposed sensor with other electrochemical sensors for the determination of UA*.

* MUA: 11-mercapto undecanoic acid; MPA: 3-mercapto propionic acid;

AuNP: gold nanoparticle; APTES: 3-aminopropyltriethoxysilane; ITO: indium-tin-oxide;

Th: thionine; SWNTs: single-walled carbon nanotube; GCE: glassy carbon electrode;

BS³: bis[sulfosuccinimidyl]suberate; T-ZnO: tetrapod-shaped ZnO nanostructure;

Ir-C: Ir-modified carbon; MWCNTs: multiwalled carbon nanotubes;

PEDOT: poly-3.4-dioxoethylenethiophene film; PANI: polyaniline, GO: graphene oxide; BNDCNPE: [1, 1'-binaphthalene]-4, 4'-dio- and carbon nanotubes paste electrode.

Samples	Detected	Added	Found	Recovery
	(µM)	(µM)	(µM)	(%)
Sample-A	10.51	15.0	25.3	99.2
Sample-B	9.80	15.0	25.2	101.6
Sample-C	11.20	15.0	25.8	98.5

Table. S2: Determination of UA in human urine samples

References

- 36 T. Ahuja, V. Tanwar, S. Mishra, D. Kumar, A. Biradar, and Rajesh. J. Nanosci. Nanotechnol., 2011, 11, 4692-4701.
- 37 D. Chen, Q. Wang, J. Jin, P. Wu, H. Wang, S. Yu, H. Zhang, and C. Cai, *Anal. Chem.*, 2010, 82, 2448-2455.
- 38 T. Ahuja, Rajesh, D. Kumar, V. K. Tanwar, V. Sharma, N. Singh, and A. M. Biradar, *Thin Solid Films*, 2010, 519, 1128-1134.
- 39 Y. Lei, X. Liu, X. Yan, Y. Song, Z. Kang, N. Luo, and Y. Zhang, J. Nanosci. Nanotechnol., 2012, 12, 513-518.
- 40 Y. C. Luo, J. S. Do, and C. C. Liu, Biosens. Bioelectron., 2006, 22, 482-488.
- 41 K. C. Lin, T. H. Tsai, and S. M. Chen, Biosens. Bioelectron., 2010, 26, 608-614.
- 42 K. Arora, M. Tomar and V. Gupta, Analyst, 2014, 139, 837-849.
- 43 P. Manivel, M. Dhakshnamoorthy, A. Balamurugan, N. Ponpandian, D. Mangalaraj and C. Viswanathan, *RSC Adv.*, 2013, 3, 14428–14437.
- 44. M. M. Ardakani, S. H. Ahmadi, Z. S. Mahmoudabadi, K. T. Heydar, and B. F. Mirjalili, *Anal. Methods*, 2013, DOI: 10.1039/C3AY40630J.