Contents

Acid-induced formation of hydrogen-bonded double helix based on chiral polyphenyl-bridged bis(2,2'-bipyridine) ligands

Kiu-Chor Sham, Chi-Chung Yee, Yi Pan, Kai-Chung Lau, Shek-Man Yiu, Hoi-Lun Kwong*

Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR (China) Fax: 852 3442 0522; Tel: 852 3442 7304; E-mail: <u>bhhoik@cityu.edu.hk</u>

Supporting information

ESI-MS spectra of L2–4 with addition of HClO₄.....P2 CD spectra of titration experiments of L2–4 with HClO₄.....P3–4 Line-shape analysis on the VT ¹H NMR experiments......P5–8 Tables containing selected bond lengths and angles of models obtained in DFT calculations and results Atom in molecules the of (AIM) analysis.....P34–S39 References......P40

Figure S1 ESI-MS spectrum of a CH₂Cl₂ solution of L2–4 with addition of HClO₄, inset shows the isotopic distribution of $[(L)_2H_2](ClO_4)^+$ (L = L2–4)

CD spectra of titration experiments of L2–4 with HClO₄

Figure S2 CD spectrum of **L2** in $CH_2Cl_2(3 \times 10^{-4} \text{ M})$ with addition of $HClO_4$ (0 to 4 equiv). The inset shows the change in absorption at 334 nm.

Figure S3. CD spectrum of L3 in CH_2Cl_2 (3 × 10⁻⁴ M) with addition of $HClO_4$ (0 to 4 equiv). The inset shows the change in absorption at 331 nm.

Figure S4 CD spectrum of **L4** in CH_2Cl_2 (3 × 10⁻⁴ M) with addition of $HClO_4$ (0 to 4 equiv). The inset shows the change in absorption at 332 nm.

Line-shape analysis on the VT ¹H NMR experiments

Analysis of the linewidth of the signals at temperature below coalescence give the exchange rate, k, by using equation (1).^{1,2}

Where W_{obs} is the half height width observed of the broadened signal, W_o is the half height width when there is not exchange, which W_{obs} and W_o are measured experimentally (figure S5–7), and W_e is the composition of half height width come from the exchange which $W_e = k/\pi$

For L2, $k_{L2} = (13.8-4)\pi = 31 \text{ s}^{-1} \text{ at } -20^{\circ}\text{C}$ For L3, $k_{L3} = (8.4-3.6)\pi = 15 \text{ s}^{-1} \text{ at } -20^{\circ}\text{C}$ For L4, $k_{L4} = (6.6-2.7)\pi = 12.3 \text{ s}^{-1} \text{ at } -10^{\circ}\text{C}$

With the exchange rate, the free energy of activation was calculated by using the equation $(2)^3$

 $\Delta G^{++} = aT[10.319 + log(T/k)], a = 4.575*10^{-3} kcalmol^{-1}(2)$

For L2, $\Delta G^{++} = 13.0 \text{ kcalmol}^{-1}$ For L3, $\Delta G^{++} = 13.4 \text{ kcalmol}^{-1}$ For L4, $\Delta G^{++} = 14.0 \text{ kcalmol}^{-1}$

Figure S5 ¹H NMR spectra for L2 (3×10^{-4} M) in CD₂Cl₂ with addition of 2.0 equiv. of HClO₄ which shows the signal of the methyl group (CH₃) on the chiral substituent. The spectrum obtained at (a) -20 °C, (b) -60 °C.

Figure S6 ¹H NMR spectra for L3 (3×10^{-4} M) in CD₂Cl₂ with addition of 2.0 equiv. of HClO₄ which shows the signal of the methyl group (CH₃) on the chiral substituent. The spectrum obtained at (a) -20 °C, (b) -40 °C.

Figure S7 ¹H NMR spectra for L4 (3×10^{-4} M) in CD₂Cl₂ with addition of 1.0 equiv. of HClO₄ which shows the signal of the methyl group (CH₃) on the chiral substituent. The spectrum obtained at (a) -10 °C, (b) -40 °C.

Figure S8 ¹H NMR (300 MHz, CDCl₃) of intermediate 2

Figure S9¹H NMR (300 MHz, CDCl₃) of intermediate 3

Figure S10 ¹H NMR (400 MHz, CDCl₃)of intermediate 4

Figure S11 ¹H NMR spectrum (CDCl₃, 400 MHz) of L1

Figure S12 13 C NMR spectrum (CDCl₃, 400 MHz) of L1

COSY in CD2C12

Figure S13 gCOSY spectrum of L1 in aromatic region 9 to 7 ppm.

Figure S14 gCOSY spectrum of L1 in aliphatic region 4 to 0 ppm.

Figure S15 NOESY spectrum of L1 in aromatic region 9 to 7 ppm.

Figure S16 NOESY spectrum of **L1** showing the correlation signals between the protons at aromatic and aliphatic region.

Figure S17 ¹H NMR spectrum (CD₂Cl₂, 400 MHz) of L2

Figure S18 13 C NMR spectrum (CD₂Cl₂, 400 MHz) of L2

Figure S19 gCOSY spectrum of L2 in aromatic region 9 to 7 ppm.

Figure S20 gCOSY spectrum of L2 in aliphatic region 4 to 0 ppm.

Figure S21 ¹H NMR spectrum (CDCl₃, 400 MHz) of L3

Figure S22 ¹³C NMR spectrum (CDCl₃, 400 MHz) of L3

Figure S23 The aromatic region of gCOSY spectrum (CDCl₃, 400 MHz) of L3

Figure S24 The aliphatic region of gCOSY spectrum (CDCl₃, 400 MHz) of L3

Figure S25 The aromatic region of NOESY spectrum (CDCl₃, 400 MHz) of L3

Figure S26 NOESY spectrum (CDCl₃, 400 MHz) of **L3** showing the correlation signals between the proton at the aromatic and aliphatic region.

Figure S27 ¹H NMR spectrum (CDCl₃, 400 MHz) of L4

Figure S28 ¹³C NMR spectrum (CDCl₃, 400 MHz) of L4

Figure S29 gCOSY spectrum (CD₂Cl₂, 400 MHz) of L4 showing the aromatic region

Figure S30 gCOSY spectrum (CD₂Cl₂, 400 MHz) of L4 showing the aliphatic region

Figure S31 NOESY spectrum (CD_2Cl_2 , 400 MHz) of L4 showing the aromatic region

Figure S32 NOESY spectrum (CDCl₃, 400 MHz) of **L4** showing the correlation signals between the proton at the aromatic and aliphatic region.

D–H […] A	H […] A/Å	D–H […] A/°
N89–H184 […] N195	1.890	158.00
C130–H20 Cl 191	2.874	129.15
C24–H25 […] Cl 193	2.801	112.62
C28–H29 Cl 193	2.838	157.31
C28–H29 […] Cl 194	2.726	119.56
C124–H125 […] Cl 194	2.805	151.17
C128–H129 […] Cl 194	2.827	128.67

Tables containing selected bond lengths and angles of models obtained in DFT calculations and the results of Atom in molecules (AIM) analysis

Table S1 Hydrogen bonding parameters of the model of $[(L2)_2H_2](FeCl_4)_2$ obtainedby theoretical calculation at M06-2X/6-31G(d)/LANL2DZ level.

D-H A	H […] A/Å	ρ of BCP	$\nabla^2 \rho$ of BCP
N89–H184 […] N195	1.890	0.035	0.1
C130–H20 […] Cl 191	2.874	0.008	0.03
C24–H25 […] Cl 193	2.801	0.009	0.03
C28–H29 […] Cl 193	2.838	0.007	0.03
C28–H29 […] Cl 194	2.726	0.010	0.04
C124–H125 […] Cl 194	2.805	0.007	0.03
C128–H129 Cl 194	2.827	0.008	0.03

Table S2 Results obtained by Atoms in Molecules (AIM) analysis of $[(L2)_2H_2](FeCl_4)_2$.

D–H […] A	H […] A/Å	D–H […] A/°
N89–H185 […] N184	1.940	153.66
C28–H29 […] O189	2.589	118.0
C124–H125 […] O189	2.339	154.85
C128–H129 O189	2.344	133.81
C24–H25 […] O190	2.314	146.80
C28–H29 […] O190	2.204	172.27
C24–H25 […] O191	2.423	145.67
C130–H131 […] O191	2.478	107.31

Table S3 Hydrogen bonding parameters of the model of $[(L2)_2H_2](ClO_4)_2$ obtained by theoretical calculation at M06-2X/6-31G(d)/LANL2DZ level.

D–H […] A	H […] A/Å	ρ of BCP	$\nabla^2 \rho$ of BCP
N89–H185 […] N184	1.940	0.031	0.09
C28–H29 […] O189	2.589	0.09	0.03
C124–H125 […] O189	2.339	0.010	0.04
C128–H129 O189	2.344	0.013	0.05
C28-H25 O190	2.314	0.014	0.05
C24–H29 […] O190	2.204	0.017	0.05
C24-H25 O191	2.423	0.011	0.04
C130–H131 […] O191	2.478	0.10	0.04

Table S4 Results obtained by Atoms in Molecules (AIM) analysis of $[(L2)_2H_2](ClO_4)_2$.^{4,5}

D–H […] A	H […] A/Å	D–H […] A/°
N4-H205 N5	3.019	153.53
C81–H83 […] Cl 213	2.688	162.92
C146–H147 […] Cl 213	2.997	115.34
C152–H153 […] Cl 213	2.712	150.53
C78–H79 […] Cl 193	3.001	144.47
C82–H83 Cl 193	2.931	111.86
C76–H77 […] Cl 216	3.151	115.46
C78–H79 […] Cl 216	2.741	131.30
C154–H155 […] Cl 216	3.019	108.30

Table S5 Hydrogen bonding parameters of the model of $[(L3)_2H_2](FeCl_4)_2$ obtainedby theoretical calculation at M06-2X/6-31G(d)/LANL2DZ level.

D–H […] A	H A/Å	ρ of BCP	$\nabla^2 \rho$ of BCP
N4–H205 […] N5	3.019	0.032	0.09
C81–H83 Cl 213	2.688	0.010	0.04
C146–H147 […] Cl 213	2.997	0.006	0.02
C152–H153 […] Cl 213	2.712	0.009	0.03
C78–H79 […] Cl 193	3.001	0.006	0.02
C82–H83 Cl 193	2.931	0.009	0.03
C76–H77 […] Cl 216	3.151	0.004	0.02
C78–H79 […] Cl 216	2.741	0.009	0.03
C154–H155 […] Cl 216	3.019	0.006	0.02

Table S6 Results obtained by Atoms in Molecules (AIM) analysis of $[(L3)_2H_2](FeCl_4)_2$.^{4,5}

D–H […] A	H […] A/Å	D–H […] A/°
N4–H205 […] N5	1.974	152.00
С78–Н79 […] О 214	2.192	173.98
С82–Н83 […] О 214	2.145	166.70
C152–H153 […] O 215	2.427	127.31
C154–H155 […] O 215	2.787	113.32
C82–H83 O 216	2.393	127.10
C146–H147 […] O 216	2.529	112.95
C152–H153 […] O 216	2.315	142.77

Table S7 Hydrogen bonding parameters of the model of $[(L3)_2H_2](ClO_4)_2$ obtained by theoretical calculation at M06-2X/6-31G(d)/LANL2DZ level.

D–H […] A	H […] A/Å	ρ of BCP	$\nabla^2 \rho$ of BCP
N4-H205 N5	1.974	0.029	0.08
С78–Н79 […] О 214	2.192	0.015	0.05
С82–Н83 […] О 214	2.145	0.019	0.06
С152–Н153 […] О 215	2.427	0.012	0.04
C154–H155 […] O 215	2.787	0.006	0.02
С82–Н83 […] О 216	2.393	0.012	0.04
C146–H147 O 216	2.529	0.009	0.03
C152–H153 O 216	2.315	0.014	0.05

Table S8 Results obtained by Atoms in Molecules (AIM) analysis of $[(L3)_2H_2](ClO_4)_2$.

D–H […] A	H […] A/Å	D–H […] A/°
N117–H216 […] N1	2.07	136.38
C42–H43 […] Cl 230	2.92	117.67
C185–H186 Cl 230	3.00	120.65
C40-H41 Cl 231	2.88	118.54
C191–H192 […] Cl 231	2.82	133.84
C187–H188 Cl 232	2.79	152.51
C191–H192 […] Cl 232	2.69	137.20

Table S9 Hydrogen bonding parameters of the model of $[(L4)_2H_2](FeCl_4)_2$ obtainedby theoretical calculation at M06-2X/6-31G(d)/LANL2DZ level.

D–H […] A	H […] A/Å	D–H […] A/°
N4-H103 N114	2.084	137.13
C74–H75 […] O233	2.161	174.70
C78–H79 […] O233	2.108	177.15
C155-H156 O 234	2.350	153.65
С78–Н79 […] О 235	2.455	119.70
С153–Н154 […] О 235	2.331	123.35

Table S10 Hydrogen bonding parameters of the model of $[(L4)_2H_2](ClO_4)_2$ obtainedby theoretical calculation at M06-2X/6-31G(d)/LANL2DZ level.

D–H […] A	H […] A/Å	ρ of BCP	$\nabla^2 \rho$ of BCP
N4-H103N114	2.084	0.024	0.07
С74-Н75 О233	2.161	0.017	0.06
C78–H79 […] O233	2.108	0.020	0.06
C155–H156 O 234	2.350	0.012	0.04
С78–Н79 […] О 235	2.455	0.011	0.04
C153–H154 […] O 235	2.331	0.013	0.05

Table S11 Results obtained by Atoms in Molecules (AIM) analysis of $[(L4)_2H_2](ClO_4)_2$.

Reference

- 1) J. Sandström, *Dynamic NMR spectroscopy*; Academic Press: London, 1982, chapter 6.
- 2) R. L. Paul, S. P. Argent, J. C. Jeffery, L. P. Hardling, J. M. Lynam, M. D. Ward, *Dalton Trans.*, 2004, 3453.
- 3) H. Shanan-Atidi, H. H. Bar-Eli, J. Chem. Phy., 1970, 4, 961.
- 4) D. L. Wu et al., J. Phys. Chem. A 2007, 111, 5244-5252
- 5) P. Popolier, Chapter 10, *Atoms in Molecules: An Introduction*, Pearson Education Limited Press, 2000