Electronic Supplementary Information

Topochemical synthesis of Bi_2O_3 microribbons and their application in lithium-ion batteries[†]

Hai Wang, Hongxing Yang,* and Lin Lu

Renewable Energy Research Group (RERG), Department of Building Services Engineering, The Hong Kong Polytechnic University, Room: ZN816, Kowloon, Hong Kong, China. Fax: +852-27746146; Tel: +852-27665863; E-mail: bxhxyang@polyu.edu.hk.

Figure capations

Fig. S1 The FESEM images of $Bi(C_2O_4)OH$ at different reaction time. (a) 4 h; (b) 6 h and (c) 10 h. **Fig. S2** Comparison of the crystal structures of $Bi(C_2O_4)OH$ and Bi_2O_3 at different view a, b, and c axis, respectively.

Fig. S3. The FESEM images of as-made $A-Bi_2O_3$ after the thermal decomposition at 400 °C for 1 h. **Fig. S4**. EDX spectra of $A-Bi_2O_3$ microribbons. The elemental composition for $A-Bi_2O_3$ microribbons with atomic and weight percentage has been given in the inset table.

Table Capactions

Tab. 1 The comparison of crystal structures of $Bi(C_2O_4)OH$ and Bi_2O_3 .

Fig. S1 The FESEM images of $Bi(C_2O_4)OH$ at different reaction time. (a) 4 h; (b) 6 h and (c) 10 h.

Fig. S2 Comparison of the crystal structures of $Bi(C_2O_4)OH$ and Bi_2O_3 at different view a, b, and c axis, respectively.

Fig. S3. The FESEM images of as-made A-Bi $_2O_3$ after the thermal decomposition at 400 $^\circ C$ for 1 h.

Fig. S4. EDX spectra of $A-Bi_2O_3$ microribbons. The elemental composition for $A-Bi_2O_3$ microribbons with atomic and weight percentage has been given in the inset table.

Tab. 1 The comparison of crystal structures of $Bi(C_2O_4)OH$ and Bi_2O_3 .

Unit cells parameters	Space-group	a (Å)	b (Å)	c (Å)	V (Å ³)
Bi(C ₂ O ₄)OH	P <i>nma</i> (62)- orthorhombic	6.0853(2)	11.4479(3)	5.9722(2)	416.05(2)
Bi ₂ O ₃	P121/c1(14)- monoclinic	5.8496(3)	8.1648(4)	7.5101(4)	330.23(3)