Electronic Supplementary Information (ESI) for RSC Advances

A 4-*tert*-butylcalix[4]arene tetrahydroxamate podand based on the 1-oxypiperidine-2-one (1,2-PIPO⁻) chelate. Self-assembly into a supramolecular ionophore driven by coordination of tetravalent zirconium or hafnium(IV)

Pawel Jewula,^a Jean-Claude Chambron,*^a Marie-José Penouilh,^a Yoann Rousselin^a and Michel Meyer*^a

^a Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, 9 avenue A. Savary, BP 47870, 21078 Dijon Cedex, France. E-mail: jean-claude.chambron@u-bourgogne.fr and michel.meyer@u-bourgogne.fr; Fax: +33 3 80 39 61 17; Tel: 33 3 80 39 61 16

Table of Contents

Table S1	Crystal data for 1Bn ₄	3
Table S2	Atomic occupancy for 1Bn ₄	3
Table S3	Bond lengths for 1Bn ₄	4
Table S4	Bond angles for 1Bn ₄	6
Table S5	Torsion angles for 1Bn ₄	9
Table S6	Spherical polar coordinates of the four 1,2-PIPOBn pendants of 1Bn ₄	. 12
Figure S1	ORTEP view of 1Bn ₄ viewed along the direction of rings A and C	12
Figure S2	ESI mass spectrum of 1Bn ₄ .	13
Figure S3	ESI mass spectrum of 1Bn ₄ (detail)	14
Figure S4	ESI mass spectrum of 1H ₄	15
Figure S5	ESI mass spectrum of 1H ₄ (detail).	16
Figure S6	¹ H NMR spectrum of 1Bn ₄	17
Figure S7	¹³ C NMR spectrum of 1 Bn ₄	17
Figure S8	¹ H- ¹ H COSY NMR spectrum of 1 Bn ₄	18
Figure S9	¹ H- ¹ H ROESY NMR spectrum of 1 Bn ₄ .	19
Figure S10	¹³ C- ¹ H HSQC NMR spectrum of 1Bn ₄	20
Figure S11	¹³ C- ¹ H HMBC NMR spectrum of 1 Bn ₄	20
Figure S12	¹ H NMR spectrum of $1H_4$	21
Figure S13	¹³ C NMR spectrum of 1H ₄ .	21
Figure S14	¹ H- ¹ H COSY NMR spectrum of 1 H ₄	22
Figure S15	¹ H- ¹ H COSY NMR spectrum of 1 H ₄	23
Figure S16	¹ H- ¹ H ROESY NMR spectrum of 1 H ₄	24
Figure S17	¹³ C- ¹ H HSQC NMR spectrum of 1H ₄ .	25
Figure S18	¹³ C- ¹ H HMBC NMR spectrum of 1 H ₄ .	25
Figure S19	¹ H NMR spectrum of $1H_4 + 1$ equiv. NaCl.	26
Figure S20	¹ H NMR spectrum of 1 H ₄ + 1 equiv. KCl	26
Figure S21	Stacked plot of the ¹ H NMR spectra of $1H_4$ and $1H_4 + 1$ equiv. $M(acac)_4$ (M = Zr or Hf)	27
Figure S22	MALDI-TOF mass spectrum of $1H_4 + 1$ equiv. $Zr(acac)_4 + 0.5$ equiv. KCl	28

Figure S23	MALDI-TOF mass spectrum of $1H_4 + 1$ equiv. Hf(acac) ₄ + 0.5 equiv. KCl	
Figure S24	ESI mass spectrum of $1H_4 + 1$ equiv. $Zr(acac)_4 + 0.5$ equiv. KC1	29
Figure S25	¹ H NMR spectrum of $1H_4 + 1$ equiv. $Zr(acac)_4 + 0.5$ equiv. KCl	29
Figure S26	¹ H NMR spectra of 1 H ₄ and its complexes	
Figure S27	$^{1}\text{H}-^{1}\text{H}$ COSY NMR spectrum of 1H_{4} + 1 equiv. Hf(acac) ₄ + 0.5 equiv. KCl	
Figure S28	¹ H- ¹ H ROESY NMR spectrum of $1H_4 + 1$ equiv. Hf(acac) ₄ + 0.5 equiv. KCl	
Figure S29	¹ H- ¹ H ROESY NMR spectrum of $1H_4 + 1$ equiv. Hf(acac) ₄ + 0.5 equiv. KCl	
Figure S30	¹ H- ¹ H ROESY NMR spectrum of $1H_4 + 1$ equiv. Hf(acac) ₄ + 0.5 equiv. KCl	
Figure S31	13 C- 1 H HSQC NMR spectrum of 1H ₄ + 1 equiv. Hf(acac) ₄ + 0.5 equiv. KCl	
Figure S32	13 C- 1 H HSQC NMR spectrum of 1H ₄ + 1 equiv. Hf(acac) ₄ + 0.5 equiv. KCl	
Figure S33	13 C- ¹ H HMBC NMR spectrum of 1H ₄ + 1 equiv. Hf(acac) ₄ + 0.5 equiv. KCl	
Figure S34	¹ H NMR spectra of $1H_4 + 1$ equiv. Hf(acac) ₄ + 0.5 equiv. KCl at $T = 300$ and 335 K	

Table S1	Crystal	data	for	$1Bn_4$
----------	---------	------	-----	---------

Empirical formula	$C_{100.75}H_{123.5}N_8O_{17}$
Molecular mass (g mol^{-1})	1718.06
Colour	colourless
Crystal size (mm ³)	$0.30 \times 0.25 \times 0.10$
Crystal system	monoclinic
Space group	<i>P</i> 2 ₁
<i>a</i> (Å)	15.6125(2)
<i>b</i> (Å)	18.2100(3)
<i>c</i> (Å)	18.3284(3)
β (°)	101.789(1)
$V(\text{\AA}^3)$	5100.9(4)
Ζ	2
$d_{\rm cal} ({\rm g \ cm}^{-3})$	1.119
μ (Mo K α) (mm ⁻¹)	0.076
<i>F</i> (000)	1839.0
2θ range (°)	8.154 to 54.934
<i>T</i> (K)	115(2)
λ (Mo Ka) (Å)	0.71073
Numbers of collected reflections	66668
Numbers of independent reflections	22535 [$R_{\rm int} = 0.0437$]
Data/restraints/parameters	22535/25/1015
Final R indexes $(I > 2\sigma(I))^a$	$R_1 = 0.0703; wR_2 = 0.1827$
Final R indexes (all data) ^{a}	$R_1 = 0.0863; wR_2 = 0.2007$
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e}{ m \AA}^{-3})$	0.73, -0.580
${}^{a}R_{1} = \Sigma F_{o} - F_{c} / \Sigma F_{o} , wR_{2} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w]$	$(F_{o}^{2})^{2}]\}^{1/2}$.

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
C1A	0.5	H1AA	0.25	H1AB	0.25
H1AC	0.25	H1AD	0.25	H1AE	0.25
H1AF	0.25	O2A	0.25	H2A	0.25
O3B	0.25	H3B	0.25	C1B	0.25
H1BA	0.25	H1BB	0.25	H1BC	0.25
O2C	0.25	H2C	0.25	O2D	0.25

Table S3	Bond	lengths	for	$1Bn_4$
----------	------	---------	-----	---------

Atom	Atom	Length (Å)	Atom	Atom	Length (Å)
C1	C2	1.528(6)	C56	C55	1.3900
C1	C39	1.513(6)	C55	C54	1.3900
C2	C3	1.395(6)	C59	C60	1.531(5)
C2	C7	1.406(5)	C59	O2	1.426(5)
C3	C4	1.396(6)	C60	N3	1.331(5)
C4	C5	1.387(6)	C60	O8	1.230(5)
C4	C8	1.529(6)	C61	C62	1.510(6)
C5	C6	1.398(6)	C61	C65	1.531(6)
C6	C7	1.391(6)	C61	N3	1.455(5)
C6	C12	1.522(5)	C62	C63	1.522(7)
C7	O1	1.392(5)	C63	C64	1.500(8)
C8	C9	1.531(7)	C64	N4	1.453(6)
C8	C10	1.536(7)	C65	N4	1.344(6)
C8	C11	1.531(7)	C65	O9	1.219(6)
C12	C13	1.519(5)	C66	C67	1.504(6)
C13	C14	1.401(5)	C66	O10	1.452(7)
C13	C18	1.391(5)	C67	C68	1.3900
C14	C15	1.391(6)	C67	C72	1.3900
C15	C16	1.402(6)	C68	C69	1.3900
C15	C19	1.534(6)	C69	C70	1.3900
C16	C17	1.392(5)	C70	C71	1.3900
C17	C18	1.398(5)	C71	C72	1.3900
C17	C23	1.518(5)	C73	C74	1.514(6)
C18	O2	1.389(4)	C73	O3	1.443(5)
C19	C20	1.534(7)	C74	N5	1.330(6)
C19	C21	1.533(8)	C74	O11	1.234(6)
C19	C22	1.533(8)	C75	C76	1.518(6)
C23	C24	1.536(5)	C75	C79	1.547(6)
C24	C25	1.393(5)	C75	N5	1.448(5)
C24	C29	1.401(5)	C76	C77	1.511(6)
C25	C26	1.391(6)	C77	C78	1.497(7)
C26	C27	1.394(6)	C78	N6	1.462(6)
C26	C30	1.542(6)	C79	N6	1.341(6)
C27	C28	1.397(6)	C79	012	1.219(6)
C28	C29	1.407(5)	C80	C81	1.508(6)
C28	C34	1.518(5)	C80	O13	1.448(6)
C29	O3	1.391(4)	C81	C86	1.3900
C30	C31	1.512(7)	C81	C82	1.3900
C30	C32	1.521(7)	C86	C85	1.3900
C30	C33	1.532(7)	C85	C84	1.3900
C34	C35	1.503(5)	C84	C83	1.3900
C35	C36	1.406(5)	C83	C82	1.3900
C35	C40	1.400(5)	C87	C88	1.516(6)
C36	C37	1.390(6)	C87	O4	1.432(5)
C37	C38	1.397(6)	C88	N7	1.340(6)
C37	C41	1.532(5)	C88	O14	1.233(5)

C38	C39	1.399(6)	C89	C90	1.528(8)
C39	C40	1.400(6)	C89	C93	1.524(8)
C40	O4	1.383(4)	C89	N7	1.457(6)
C41	C42	1.528(6)	C90	C91	1.528(7)
C41	C43	1.533(7)	C91	C92	1.508(7)
C41	C44	1.536(7)	C92	N8	1.452(7)
C45	C46	1.526(6)	C93	N8	1.331(7)
C45	O1	1.431(5)	C93	O15	1.228(6)
C46	N1	1.332(6)	C94	C95	1.493(8)
C46	O5	1.224(5)	C94	O16	1.473(9)
C47	C48	1.512(6)	C95	C96	1.3900
C47	C51	1.544(7)	C95	C100	1.3900
C47	N1	1.448(5)	C96	C97	1.3900
C48	C49	1.516(7)	C97	C98	1.3900
C49	C50	1.518(10)	C98	C99	1.3900
C50	N2	1.449(8)	C99	C100	1.3900
C51	N2	1.365(6)	N2	O7	1.419(6)
C51	O6	1.209(6)	N4	O10	1.415(5)
C52	C53	1.549(9)	N6	O13	1.411(5)
C52	O7	1.464(9)	N8	O16	1.406(5)
C53	C58	1.3900	C1A	O2A	1.46(5)
C53	C54	1.3900	C1A	O3B	1.47(4)
C58	C57	1.3900	C1B	O2C	1.53(4)
C57	C56	1.3900			

Atom	Atom	Atom	Angle (deg)	Atom	Atom	Atom	Angle (deg)
C39	C1	C2	110.0(3)	C58	C53	C52	118.3(5)
C3	C2	C1	118.7(4)	C58	C53	C54	120.0
C3	C2	C7	118.2(4)	C54	C53	C52	121.6(5)
C7	C2	C1	123.0(4)	C53	C58	C57	120.0
C2	C3	C4	122.9(4)	C56	C57	C58	120.0
C3	C4	C8	120.9(4)	C55	C56	C57	120.0
C5	C4	C3	116.7(4)	C54	C55	C56	120.0
C5	C4	C8	122.4(4)	C55	C54	C53	120.0
C4	C5	C6	122.8(4)	O2	C59	C60	111.3(3)
C5	C6	C12	117.4(4)	N3	C60	C59	113.3(4)
C7	C6	C5	118.7(4)	08	C60	C59	123.0(3)
C7	C6	C12	123.8(4)	08	C60	N3	123.7(4)
C6	C7	C2	120.5(4)	C62	C61	C65	113.7(4)
C6	C7	01	119.3(3)	N3	C61	C62	112.9(4)
01	C7	C2	120.0(4)	N3	C61	C65	107.2(4)
C4	C8	C9	108.5(4)	C61	C62	C63	109.6(4)
C4	C8	C10	110.2(4)	C64	C63	C62	109.9(4)
C4	C8	C11	112.6(4)	N4	C64	C63	110.6(4)
C9	C8	C10	108.7(4)	N4	C65	C61	115.8(4)
C11	C8	C9	107.9(5)	09	C65	C61	122.3(4)
C11	C8	C10	108.8(4)	09	C65	N4	121.8(4)
C13	C12	C6	108.6(3)	O10	C66	C67	113.3(4)
C14	C13	C12	121.3(3)	C68	C67	C66	119.3(4)
C18	C13	C12	119.8(3)	C68	C67	C72	120.0
C18	C13	C14	118.6(3)	C72	C67	C66	120.7(4)
C15	C14	C13	122.1(4)	C67	C68	C69	120.0
C14	C15	C16	117.1(3)	C68	C69	C70	120.0
C14	C15	C19	122.8(4)	C71	C70	C69	120.0
C16	C15	C19	120.1(4)	C72	C71	C70	120.0
C17	C16	C15	122.6(4)	C71	C72	C67	120.0
C16	C17	C18	118.1(3)	03	C73	C74	113.8(3)
C16	C17	C23	119.8(3)	N5	C74	C73	115.8(4)
C18	C17	C23	121.8(3)	011	C74	C73	119.4(4)
C13	C18	C17	121.3(3)	011	C74	N5	124.8(4)
O2	C18	C13	116.7(3)	C76	C75	C79	113.2(4)
O2	C18	C17	121.6(3)	N5	C75	C76	110.4(4)
C20	C19	C15	109.9(4)	N5	C75	C79	109.8(3)
C21	C19	C15	109.0(4)	C77	C76	C75	111.3(4)
C21	C19	C20	109.6(5)	C78	C77	C76	110.2(4)
C22	C19	C15	111.8(4)	N6	C78	C77	110.2(4)
C22	C19	C20	107.1(5)	N6	C79	C75	114.5(4)
C22	C19	C21	109.3(4)	012	C79	C75	121.3(4)
C17	C23	C24	108.8(3)	012	C79	N6	123.8(4)
C25	C24	C23	118.7(3)	013	C80	C81	112.2(4)
C25	C24	C29	118.5(3)	C86	C81	C80	119.8(3)
C29	C24	C23	122.8(3)	C86	C81	C82	120.0

Table S4 Bond angles for 1Bn₄

C26	C25	C24	122.6(4)	C82	C81	C80	120.1(3)
C25	C26	C27	116.9(4)	C81	C86	C85	120.0
C25	C26	C30	119.5(4)	C84	C85	C86	120.0
C27	C26	C30	123.5(4)	C83	C84	C85	120.0
C26	C27	C28	122.9(4)	C84	C83	C82	120.0
C27	C28	C29	117.9(4)	C83	C82	C81	120.0
C27	C28	C34	118.8(3)	O4	C87	C88	112.1(3)
C29	C28	C34	123.3(3)	N7	C88	C87	113.0(4)
C24	C29	C28	120.4(3)	O14	C88	C87	123.3(4)
O3	C29	C24	120.1(3)	O14	C88	N7	123.6(4)
O3	C29	C28	119.4(3)	C93	C89	C90	113.3(4)
C31	C30	C26	112.2(4)	N7	C89	C90	113.1(4)
C31	C30	C32	110.1(5)	N7	C89	C93	107.0(4)
C31	C30	C33	108.2(4)	C89	C90	C91	108.0(4)
C32	C30	C26	108.5(4)	C92	C91	C90	109.6(4)
C32	C30	C33	107.6(4)	N8	C92	C91	110.8(4)
C33	C30	C26	110.2(4)	N8	C93	C89	116.9(4)
C35	C34	C28	113.6(3)	015	C93	C89	121.2(5)
C36	C35	C34	122.2(3)	015	C93	N8	121.9(6)
C40	C35	C34	120.2(3)	016	C94	C95	113.8(5)
C40	C35	C36	117.6(3)	C96	C95	C94	117.9(5)
C37	C36	C35	122.7(4)	C96	C95	C100	120.0
C36	C37	C38	117.1(4)	C100	C95	C94	122.1(5)
C36	C37	C41	123.5(4)	C97	C96	C95	120.0
C38	C37	C41	119.4(4)	C96	C97	C98	120.0
C37	C38	C39	122.6(4)	C99	C98	C97	120.0
C38	C39	C1	120.7(4)	C98	C99	C100	120.0
C38	C39	C40	117.8(4)	C99	C100	C95	120.0
C40	C39	C1	121.4(3)	C46	N1	C47	122.7(3)
C39	C40	C35	121.4(3)	C51	N2	C50	125.9(5)
O4	C40	C35	118.0(3)	C51	N2	O7	114.6(5)
O4	C40	C39	120.3(3)	O7	N2	C50	111.9(5)
C37	C41	C43	108.7(3)	C60	N3	C61	123.0(4)
C37	C41	C44	112.1(4)	C65	N4	C64	128.4(4)
C42	C41	C37	110.4(4)	C65	N4	O10	116.9(4)
C42	C41	C43	109.8(4)	O10	N4	C64	112.1(4)
C42	C41	C44	107.9(4)	C74	N5	C75	124.0(4)
C43	C41	C44	107.8(4)	C79	N6	C78	127.4(4)
01	C45	C46	114.3(4)	C79	N6	O13	116.4(4)
N1	C46	C45	117.4(4)	O13	N6	C78	112.2(4)
O5	C46	C45	117.5(4)	C88	N7	C89	123.9(4)
O5	C46	N1	125.1(4)	C93	N8	C92	127.6(4)
C48	C47	C51	113.8(4)	C93	N8	016	117.6(5)
N1	C47	C48	110.9(4)	016	N8	C92	110.8(5)
N1	C47	C51	110.2(4)	C7	01	C45	115.1(3)
N1 C47	C47 C48	C51 C49	110.2(4) 109.6(4)	C7 C18	O1 O2	C45 C59	115.1(3) 117.9(3)
N1 C47 C48	C47 C48 C49	C51 C49 C50	110.2(4) 109.6(4) 108.5(5)	C7 C18 C29	01 02 03	C45 C59 C73	115.1(3) 117.9(3) 113.8(3)

N2	C51	C47	114.0(5)	N2	07	C52	109.2(5)
06	C51	C47	122.4(4)	N4	O10	C66	110.4(4)
06	C51	N2	123.4(5)	N6	013	C80	110.1(4)
07	C52	C53	108.8(7)	N8	016	C94	110.7(5)

Table S5 Torsion angles for 1Bn4

			4						
Atom	Atom	Atom	Atom	Angle (deg)	Atom	Atom	Atom	Atom	Angle (deg)
C1	C2	C3	C4	173.3(4)	C51	C47	C48	C49	49.8(6)
C1	C2	C7	C6	-171.2(3)	C51	C47	N1	C46	-99.2(5)
C1	C2	C7	01	4.6(5)	C51	N2	07	C52	97.9(6)
C1	C39	C40	C35	165.2(4)	C52	C53	C58	C57	-177.1(7)
C1	C39	C40	O4	-8.8(6)	C52	C53	C54	C55	177.0(7)
C2	C1	C39	C38	106.0(4)	C53	C52	O7	N2	74.6(6)
C2	C1	C39	C40	-68.8(5)	C53	C58	C57	C56	0.0
C2	C3	C4	C5	-0.3(6)	C58	C53	C54	C55	0.0
C2	C3	C4	C8	-178.8(4)	C58	C57	C56	C55	0.0
C2	C7	O1	C45	63.9(5)	C57	C56	C55	C54	0.0
C3	C2	C7	C6	5.1(5)	C56	C55	C54	C53	0.0
C3	C2	C7	01	-179.1(3)	C54	C53	C58	C57	0.0
C3	C4	C5	C6	2.0(6)	C59	C60	N3	C61	-176.5(4)
C3	C4	C8	C9	-69.7(5)	C60	C59	O2	C18	-106.2(4)
C3	C4	C8	C10	49.2(6)	C61	C62	C63	C64	-62.6(6)
C3	C4	C8	C11	170.9(4)	C61	C65	N4	C64	13.0(7)
C4	C5	C6	C7	-0.1(6)	C61	C65	N4	O 10	172.7(4)
C4	C5	C6	C12	-176.3(4)	C62	C61	C65	N4	-24.2(6)
C5	C4	C8	C9	111.8(5)	C62	C61	C65	09	159.2(5)
C5	C4	C8	C10	-129 2(5)	C62	C61	N3	C60	88.2(5)
C5	C4	C8	C11	-7.5(6)	C62	C63	C64	N4	49.0(6)
C5	C6	C7	C^2	-3.6(5)	C63	C64	N4	C65	-261(8)
C5	C6	C7	01	-179 A(3)	C63	C64	N/	010	173.5(4)
C5	C6	C12	C13	59.2(4)	C64	N4	010	C66	-1179(5)
C5 C6	C0	01	C15	-1203(4)	C65	C61	C62	C63	49.1(6)
C6	C12	C13	C45	-120.3(4) -101 2(4)	C65	C61	N3	C60	-145.8(4)
C0 C6	C12	C13	C14	-101.2(4)	C65	N4	010	C00	-1+3.8(+)
C_{7}	C12	C13	C18	3 2(6)	C05	1N4 C67	C68	C00	170 5(4)
C7	C2	C12	C12	-3.2(0)	C00	C67	C00	C09	-179.3(4)
C^{\prime}	C0 C4	C12	C15 C6	-110.7(4) 170.5(4)	C00	C07	010	C/1 N4	1/9.3(4)
C0	C4	C3	C0 C2	-173.3(4)	C07		C60	114 C70	00.1(3)
C12		C7	01	1/2.3(3)		C08	C72	C70	0.0
C12	C0	C_{14}		-3.3(3)	C68		C72	C71	0.0
C12	C13	C14	C15	1/4./(3)	C08	C79	C70	C72	0.0
C12	C13		01/	-1/2.1(3)	C69	C70	C/1	C/2	0.0
C12	C13		02	0.7(5)	C70	C/I	C/2	C6/	0.0
CI3	C14	C15	C16	-0.8(6)	C/2	C67	C68	C69	0.0
CI3	CI4	C15	C19	-179.9(4)	C/3	C/4	N5	C/5	-178.8(4)
CI3	C18	02	C59	122.0(3)	C74	C73	03	C29	104.4(4)
C14	C13	C18	C17	1.7(5)	C75	C76	C77	C78	-59.6(6)
C14	C13	C18	02	174.5(3)	C75	C79	N6	C78	25.6(6)
C14	C15	C16	C17	-2.1(6)	C75	C79	N6	013	-179.0(3)
C14	C15	C19	C20	128.8(5)	C76	C75	C79	N6	-29.8(5)
C14	C15	C19	C21	-111.0(5)	C76	C75	C79	012	156.8(4)
C14	C15	C19	C22	10.0(6)	C76	C75	N5	C74	134.5(4)
C15	C16	C17	C18	4.8(6)	C76	C77	C78	N6	50.5(5)
C15	C16	C17	C23	-168.2(3)	C77	C78	N6	C79	-36.5(6)

C16	C15	C19	C20	-50.3(6)	C77	C78	N6	013	167.2(4)
C16	C15	C19	C21	69.9(5)	C78	N6	O13	C80	-122.3(4)
C16	C15	C19	C22	-169.1(4)	C79	C75	C76	C77	48.1(5)
C16	C17	C18	C13	-4.5(5)	C79	C75	N5	C74	-99.9(5)
C16	C17	C18	O2	-176.9(3)	C79	N6	O13	C80	78.7(5)
C16	C17	C23	C24	94.7(4)	C80	C81	C86	C85	-176.6(3)
C17	C18	O2	C59	-65.3(4)	C80	C81	C82	C83	176.5(3)
C17	C23	C24	C25	-59.8(4)	C81	C80	013	N6	47.3(5)
C17	C23	C24	C29	118.4(4)	C81	C86	C85	C84	0.0
C18	C13	C14	C15	1.0(6)	C86	C81	C82	C83	0.0
C18	C17	C23	C24	-78.0(4)	C86	C85	C84	C83	0.0
C19	C15	C16	C17	177.0(4)	C85	C84	C83	C82	0.0
C23	C17	C18	C13	168.3(3)	C84	C83	C82	C81	0.0
C23	C17	C18	02	-4.1(5)	C82	C81	C86	C85	0.0
C23	C24	C25	C26	173.7(3)	C87	C88	N7	C89	176.6(5)
C23	C24	C29	C28	-168.8(3)	C88	C87	04	C40	-99.7(4)
C23	C24	C29	03	8.3(5)	C89	C90	C91	C92	-63.6(6)
C24	C25	C26	C27	-2.5(6)	C89	C93	N8	C92	13 7(8)
C24	C25	C26	C30	175.0(4)	C89	C93	N8	016	168.8(4)
C24	C29	03	C73	60 9(4)	C90	C89	C93	N8	-260(6)
C25	C24	C29	C28	9 4(5)	C90	C89	C93	015	1567(5)
C25	C24	C29	03	-173 5(3)	C90	C89	N7	C88	106.6(6)
C25	C26	C27	C28	4 9(6)	C90	C91	C92	N8	49 9(6)
C25	C26	C30	C31	$\frac{1.9(0)}{173.4(5)}$	C91	C92	N8	C93	-261(7)
C25	C26	C30	C32	-64 7(6)	C91	C92	N8	016	177 4(4)
C25	C26	C30	C33	52 8(5)	C92	N8	016	C94	-1223(6)
C26	C27	C28	C29	-0.2(6)	C93	C89	C90	C91	50 7(5)
C26	C27	C28	C34	179.6(4)	C93	C89	N7	C88	-127.9(5)
C27	C26	C30	C31	-9 3(6)	C93	N8	016	C94	78 6(6)
C27	C26	C30	C32	112 6(5)	C94	C95	C96	C97	178 6(5)
C27	C26	C30	C33	-129.9(4)	C94	C95	C100	C99	-178.6(5)
C27	C28	C29	C24	-129.9(+) -7 1(5)	C95	C94	016	N8	-170.0(<i>3</i>)
C_{27}	C28	C29	03	-7.1(3) 175 8(3)	C95	C94	C07	C08	0.0
C_{27}	C28	C24	C35	173.8(3)	C95	C90	C100	C90	0.0
C28	C20	03	C73	-122 0(4)	C96	C97	C100	C99	0.0
C28	C_{2}	C35	C75	-122.0(4)	C90	C97	C90	C100	0.0
C28	C34	C35	C40	-112.9(4)	C97	C90	C100	C100	0.0
C20	C24	C35	C40	4.6(6)	C30	C95	C100	C93	0.0
C29	C24	C23	C20	-4.0(0)	N1	C95	C48	C49	174.8(4)
C29	C26	C34	C33	-111.8(4)	N1	C47	C40	C49 N2	1/4.0(4) 156.2(4)
C30	C20	C27	C28	-172.4(4)	N1	C47	C51	N2 06	-130.2(4)
C34	C28	C29	02	1/3.1(3)	N1 N2	C47	C51	00	29.0(0)
C34	C28	C29	05	-4.0(3)	IND N2	C01	C62	C05	1/1.0(4)
C34	C35	C30	C37	-179.9(4)	NO NO	C01	C65	N4 00	-149.7(4)
C34	C35	C40	04	-1/2.0(4)	INJ NE	C01	C03	09	33.0(0)
C34	C35	C40	U4	1.5(5)	IND NE	C75	C70		1/1.0(4)
C35	C36	C37	C38	-4./(6)	N5	C/5	C79	N0	-155.7(4)
035	C36	037	C41	1/4.5(4)	N5	C/5	C/9	012	32.9(6)
C35	C40	04	C87	119.4(4)	N7	C89	C90	C91	172.7(4)

C36	C35	C40	C39	9.1(5)	N7	C89	C93	N8	-151.3(4)
C36	C35	C40	O4	-176.8(3)	N7	C89	C93	015	31.4(7)
C36	C37	C38	C39	4.0(6)	01	C45	C46	N1	21.0(6)
C36	C37	C41	C42	117.9(5)	01	C45	C46	05	-159.7(4)
C36	C37	C41	C43	-121.5(5)	O2	C59	C60	N3	-142.5(3)
C36	C37	C41	C44	-2.5(6)	O2	C59	C60	08	39.2(5)
C37	C38	C39	C1	-172.0(4)	O3	C73	C74	N5	20.1(6)
C37	C38	C39	C40	3.0(6)	O3	C73	C74	011	-159.9(4)
C38	C37	C41	C42	-62.9(5)	O4	C87	C88	N7	-145.3(4)
C38	C37	C41	C43	57.7(5)	O4	C87	C88	O14	37.2(6)
C38	C37	C41	C44	176.7(4)	O5	C46	N1	C47	1.2(8)
C38	C39	C40	C35	-9.7(6)	O6	C51	N2	C50	-157.4(6)
C38	C39	C40	O4	176.2(3)	O6	C51	N2	07	-10.3(8)
C39	C1	C2	C3	-54.0(5)	O7	C52	C53	C58	86.5(6)
C39	C1	C2	C7	122.3(4)	O7	C52	C53	C54	-90.6(7)
C39	C40	O4	C87	-66.4(5)	O8	C60	N3	C61	1.8(6)
C40	C35	C36	C37	-1.6(6)	O9	C65	N4	C64	-170.3(5)
C41	C37	C38	C39	-175.2(4)	O9	C65	N4	O10	-10.7(7)
C45	C46	N1	C47	-179.6(4)	O10	C66	C67	C68	-92.1(5)
C46	C45	01	C7	107.7(4)	O10	C66	C67	C72	88.4(4)
C47	C48	C49	C50	-63.2(6)	011	C74	N5	C75	1.2(7)
C47	C51	N2	C50	28.6(8)	O12	C79	N6	C78	-161.2(5)
C47	C51	N2	07	175.6(4)	O12	C79	N6	013	-5.8(6)
C48	C47	C51	N2	-30.9(6)	O13	C80	C81	C86	63.4(4)
C48	C47	C51	06	154.9(5)	O13	C80	C81	C82	-113.2(4)
C48	C47	N1	C46	133.8(5)	O14	C88	N7	C89	-5.8(8)
C48	C49	C50	N2	56.4(6)	015	C93	N8	C92	-169.0(5)
C49	C50	N2	C51	-42.0(8)	O15	C93	N8	016	-13.9(8)
C49	C50	N2	07	170.2(4)	016	C94	C95	C96	-98.2(7)
C50	N2	07	C52	-110.4(6)	016	C94	C95	C100	80.4(6)

Ring	Q	ϕ (deg)	$\theta(\text{deg})$
А	0.5067	-91.47	139.79
В	0.4703	-84.26	150.41
С	0.4898	-89.21	139.78
D	0.5115	-77.04	150.68

Table S6 Spherical polar coordinates obtained by ring-puckering analysis of the four 1,2-PIPOBn pendants of $1Bn_4$

Figure S1 ORTEP view of $1Bn_4$ viewed along the direction of rings A and C. All C–H hydrogen atoms have been omitted for clarity. Thermal ellipsoids are drawn at the 50% probability level. Hydrogen bonds are represented by dashed lines.

Figure S2 ESI mass spectrum of 1Bn₄.

Figure S3 ESI mass spectrum of 1Bn₄ (detail).

Figure S4 ESI mass spectrum of 1H₄.

Figure S5 ESI mass spectrum of 1H₄ (detail).

Figure S7 ¹³C NMR spectrum of **1**Bn₄ (CDCl₃, 150 MHz, 298 K).

Figure S8 ¹H-¹H COSY NMR spectrum of 1Bn₄ (CDCl₃, 600 MHz, 298 K).

Figure S9 ¹H-¹H ROESY NMR spectrum of **1**Bn₄ (CDCl₃, 600 MHz, 298 K).

Figure S10¹³C-¹H HSQC NMR spectrum of 1Bn₄ (CDCl₃, 600 MHz, 298 K).

Figure S11 ¹³C-¹H HMBC NMR spectrum of 1Bn₄ (CDCl₃, 600 MHz, 298 K).

Figure S13 13 C NMR spectrum of 1H₄ (CD₃OD, 150 MHz, 300 K).

Figure S14 1 H- 1 H COSY NMR spectrum of 1H₄ (CD₃OD, 600 MHz, 300 K).

Figure S15 1 H- 1 H COSY NMR spectrum of 1H₄ (CD₃OD, 600 MHz, 300 K).

Figure S16 1 H- 1 H ROESY NMR spectrum of **1**H₄ (CD₃OD, 600 MHz, 300 K).

Figure S17 13 C- 1 H HSQC NMR spectrum of 1H₄ (CD₃OD, 600 MHz, 300 K).

Figure S18¹³C-¹H HMBC NMR spectrum of 1H₄ (CD₃OD, 600 MHz, 300 K).

Figure S19 ¹H NMR spectrum of $1H_4 + 1$ equiv. NaCl (CD₃OD, 600 MHz, 300 K).

Figure S21 Stacked plot of the ¹H NMR spectra of $1H_4$ and $1H_4 + 1$ equiv. M(acac)₄, M = Zr or Hf (CD₃OD, 600 MHz).

Figure S22 MALDI-TOF mass spectrum of $1H_4 + 1$ equiv. $Zr(acac)_4 + 0.5$ equiv. KCl.

Figure S23 MALDI-TOF mass spectrum of $1H_4 + 1$ equiv. $Hf(acac)_4 + 0.5$ equiv. KCl.

Figure S25 ¹H NMR spectrum of $1H_4 + 1$ equiv. $Zr(acac)_4 + 0.5$ equiv. KCl (CD₃OD, 600 MHz, 300 K).

Figure S26. Stacked plot of the ¹H NMR spectra (CD₃OD, 600 MHz, 300 K) of (bottom to top) $\mathbf{1H}_4$, $\mathbf{1H}_4 + \text{KCl}(1:1)$, $\mathbf{1H}_4 + \text{Hf}(\text{acac})_4(1:1)$, and $\mathbf{1H}_4 + \text{Hf}(\text{acac})_4 + \text{KCl}(2:2:1)$ obtained after heating the solutions at 60 °C. The labels s and * mark solvent and acetylacetone, respectively.

Figure S27 ¹H-¹H COSY NMR spectrum of $1H_4 + 1$ equiv. Hf(acac)₄ + 0.5 equiv. KCl (CD₃OD, 600 MHz, 335 K).

Figure S28 1 H- 1 H ROESY NMR spectrum of 1H₄ + 1 equiv. Hf(acac)₄ + 0.5 equiv. KCl (CD₃OD, 600 MHz, 335 K).

Figure S29 1 H- 1 H ROESY NMR spectrum of 1H₄ + 1 equiv. Hf(acac)₄ + 0.5 equiv. KCl (CD₃OD, 600 MHz, 335 K).

Figure S30 1 H- 1 H ROESY NMR spectrum of 1H₄ + 1 equiv. Hf(acac)₄ + 0.5 equiv. KCl (CD₃OD, 600 MHz, 335 K).

Figure S31 ¹³C-¹H HSQC NMR spectrum of $1H_4 + 1$ equiv. Hf(acac)₄ + 0.5 equiv. KCl (CD₃OD, 600 MHz, 335 K).

Figure S32 ¹³C-¹H HSQC NMR spectrum of $1H_4 + 1$ equiv. Hf(acac)₄ + 0.5 equiv. KCl (CD₃OD, 600 MHz, 300 K).

Figure S33 13 C- 1 H HMBC NMR spectrum of 1H₄ + 1 equiv. Hf(acac)₄ + 0.5 equiv. KCl (CD₃OD, 600 MHz, 335 K).

Figure S34 Comparison of the ¹H NMR spectra of $1H_4 + 1$ equiv. Hf(acac)₄ + 0.5 equiv. KCl at T = 300 and 335 K (CD₃OD, 600 MHz).