Supplementary Information

Zirconium-Beta zeolite as a robust catalyst for the transformation of levulinic acid to γ-valerolactone via Meerwein-Ponndorf-Verley reduction

Jie Wang,^a Stephan Jaenicke^a and Gaik-Khuan Chuah*^a

^aDepartment of Chemistry, National University of Singapore, 3 Science Drive 3, Kent Ridge, Singapore 117543 Fax: +65 6779 1691; Tel: +65 6516 2839; E-mail: <u>chmcgk@nus.edu.sg</u>

Fig. S1 N₂ adsorption/desorption isotherms and pore distributions of (a) $ZrO(OH)_n$ -100 (b) $ZrO(OH)_n$ -200 (c) $ZrO(OH)_n$ -300 (d) $ZrO(OH)_n$ -400 (e) $ZrO(OH)_n$ -500 and (f) $ZrO(OH)_n$ -600. The pore size distribution curves are offset by 0.1

Fig. S2 X-ray diffraction patterns of (a) $ZrO(OH)_n$ -100 (b) $ZrO(OH)_n$ -200 (c) $ZrO(OH)_n$ -300 (d) $ZrO(OH)_n$ -400 (e) $ZrO(OH)_n$ -500 and (f) $ZrO(OH)_n$ -600. The percentage of monoclinic phase (M %) in the crystallized zirconia was measured according to the equation:^[S1] % M = $1.6I_M / (1.6I_M + I_T)$, where I_M and I_T are the integrated intensities of the monoclinic (111) (2 θ = 28.5°) and tetragonal (111) (2 θ = 30.4°) reflexes, respectively.

Fig. S3 FT-IR spectra of (a) $ZrO(OH)_n$ -100 (b) $ZrO(OH)_n$ -200 (c) $ZrO(OH)_n$ -300 (d) $ZrO(OH)_n$ -400 (e) $ZrO(OH)_n$ -500 and (f) $ZrO(OH)_n$ -600. The band at *ca.* 1390 cm⁻¹ due to atmospheric CO₂ adsorbed on the sample forming a bicarbonate-like species.

Fig. S4 Pyridine IR spectra of (a) Zr-Beta-100 (b) ZrAl-Beta-25 (c) $ZrO(OH)_n$ -300 and (d) $ZrO(OH)_n$ -400 after evacuation at 100 °C (—), 200 °C (—) and 300 °C (—).

Fig. S5 CO₂-TPD profiles for: (a) Zr-Beta-100 (b) $ZrO(OH)_n$ -300 (c) $ZrO(OH)_n$ -400 (d) $ZrO(OH)_n$ -500 (e) $ZrO(OH)_n$ -600.

Fig. S6 Yield of GVL versus time-on-stream for the MPV of LA over Zr-Beta-100 at 150 °C in a continuous flow reactor with WHSV = 0.16 h^{-1} . Catalyst was regenerated at 34 h and 50 h by *insitu* calcination in air at 500 °C for 3 h.

Fig. S7 Thermogravimetry of (a) fresh Zr-Beta-100 (b) Zr-Beta-100 after 34 h of reaction at 150 °C and (c) regenerated Zr-Beta-100.

Fig. S8 TGA-MS results of (a) weight loss (b) H_2O signal (m/e 18) and (c) CO_2 signal (m/e 44) for spent Zr-Beta (—), Zr-Beta adsorbed with pure levulinic acid (—) and Zr-Beta adsorbed with pure γ -valerolactone (—). The calculated H/C ratios are 1.57,

1.63 and 1.60, respectively. The theoretical H/C ratio for levulinic acid and γ -

valerolactone are 1.60.

Fig. S9 (a) ¹H and (b) ¹³C NMR profiles for the isolated GVL. Comparison with ¹H from(c) standard PDF file

http://www.sigmaaldrich.com/spectra/fnmr/FNMR011623.PDF) supplied by Sigma-Aldrich. For further information of NMR for levulinic acid and possible by-products, please refer to literature S2, S3.

Fig. S10 Yield of GVL versus time-on-stream over Zr-Beta-100 at 250 °C in a continuous flow reactor at a high WHSV of (a) $2.0 h^{-1}$ and (b) $4.0 h^{-1}$

Catalyst	LA	2-Pentanol	LA conc.	Temp.	Time	Conv.	GVL sel.
(mg)	(mmol)	(mL)	(wt. %)	(°C)	(h)	(%)	(%)
200	1	2	7.2	118	6	82	77
					8	100	75
200	1	4	3.6	118	6	59	94
200	1	5	2.9	118	6	46	98
200	1	10	1.4	118	6	38	100

Table S1 MPV over Zr-Beta-100 with different concentration of levulinic acid.

LA	2-Pentanol	LA conc.	Т	Conv.	Ester	
(mmol)	(mL)	(wt. %)	(°C)	(%)	Sel. (%)	Yield (%)
1	2	7.2	118	11	85	9.4
1	4	3.6	118	5.2	91	4.7
1	5	2.9	118	4.6	>99	4.6
1	10	1.4	18	3.1	>99	3.1

 Table S2 Esterification of different concentration of levulinic acid without catalyst

 after 4 h

References:

- [S1] D. L. Porter, A. H. Heuer, J. Am. Ceram. Soc., 1979, 62, 298.
- [S2] H. Mehdi, V. Fábos, R. Tuba, A. Bodor, L. T. Mika and I. T. Horváth, *Top. Catal.*, 2008, 48, 49-54.
- [S3] J. M. Tukacs, D. Király, A. Strádi, G. Novodarszki, Z. Eke, G. Dibó, T. Kégl and L. T. Mika, *Green Chem.*, 2012, 14, 2057-2065.