## **Supporting Information**

## KNa<sub>3</sub>Mn<sub>7</sub>(PO<sub>4</sub>)<sub>6</sub>: 2D Spin Frustrated Magnetic Material with a

## **Diamond-like Chain Structure**

Wenbin Guo, <sup>†,‡</sup> Zhangzhen He<sup>\*,†</sup>, Suyun Zhang<sup>†</sup>, Ming Yang<sup>†</sup>, Yingying Tang<sup>†</sup>,

## and Wendan Cheng<sup>†</sup>

\*State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Mater, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

Corresponding author: Zhangzhen He, State Key Laboratory of Structural Chemistry, Fujian

Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.

R. China

Phone: 86-591-8379-2649

Fax: 86-591-8379-2649

E-mail: hezz@fjirsm.ac.cn

- Figure S1. Simulated (black line) and experimental (red line) powder X-ray (Cu Ka) diffraction patterns of KNa<sub>3</sub>Mn<sub>7</sub>(PO<sub>4</sub>)<sub>6</sub>.
- Figure S2. Different polyhedra built by Mn atoms.
- Figure S3. Oxygen-coordination environment of Mn and P atoms.
- Figure S4. Perspective view of KNa<sub>3</sub>Mn<sub>7</sub>(PO<sub>4</sub>)<sub>6</sub>. The transparent polyhedra respect the pseudotwo-dimensional slabs.
- Figure S5. Dc magnetic susceptibility measured at 0.1 T for KNa<sub>3</sub>Mn<sub>7</sub>(PO<sub>4</sub>)<sub>6</sub>.
- **Figure S6**. The low-temperature susceptibility for KNa<sub>3</sub>Mn<sub>7</sub>(PO<sub>4</sub>)<sub>6</sub> measured at 500 Oe with field-cooling (FC) and zero-field-cooling (ZFC) regimes.
- Table S1. Crystal data and structure refinement of KNa<sub>3</sub>Mn<sub>7</sub>(PO<sub>4</sub>)<sub>6</sub>.
- Table S2.
   Atomic coordinates and equivalent isotropic displacement parameters of KNa<sub>3</sub>Mn<sub>7</sub>(PO<sub>4</sub>)<sub>6</sub>.
- Table S3. Selected bond lengths and angles of KNa<sub>3</sub>Mn<sub>7</sub>(PO<sub>4</sub>)<sub>6</sub>.



Figure S1. Simulated (black line) and experimental (red line) powder X-ray (Cu Ka) diffraction

patterns of KNa<sub>3</sub>Mn<sub>7</sub>(PO<sub>4</sub>)<sub>6</sub>.



Figure S2. Different polyhedra built by Mn atoms.



Figure S3. Oxygen-coordination environment of Mn and P atoms.



Figure S4. Perspective view of KNa<sub>3</sub>Mn<sub>7</sub>(PO<sub>4</sub>)<sub>6</sub>. The transparent blue polyhedra respect the



pseudo-two-dimensional slabs.

Figure S5. Dc magnetic susceptibility measured at 0.1 T for KNa<sub>3</sub>Mn<sub>7</sub>(PO<sub>4</sub>)<sub>6</sub>.



Figure S6. The low-temperature susceptibility for KNa<sub>3</sub>Mn<sub>7</sub>(PO<sub>4</sub>)<sub>6</sub> measured at 500 Oe with field-

cooling (FC) and zero-field-cooling (ZFC) regimes.

|                                        | KNa <sub>2</sub> Mn <sub>2</sub> (PO <sub>4</sub> ) |
|----------------------------------------|-----------------------------------------------------|
| space group                            | C 2/c                                               |
|                                        |                                                     |
| a/ Å                                   | 13.165(8)                                           |
| 1 / 8                                  | 10.007(2)                                           |
| 0/ A                                   | 10.907(6)                                           |
| c/ Å                                   | 15.960(1)                                           |
|                                        |                                                     |
| $\beta^{\prime}$                       | 113.243(9)                                          |
| <b>V</b> / Å 3                         | 2106(2)                                             |
| V/ A <sup>2</sup>                      | 2106(2)                                             |
| Ζ                                      | 4                                                   |
|                                        |                                                     |
| D <sub>calcd</sub> /g.cm <sup>-3</sup> | 3.351                                               |
| $u(M_0 K_a)/mm^{-1}$                   | 6 130                                               |
|                                        | 0.137                                               |
| GOF on F <sup>2</sup>                  | 0.932                                               |
|                                        |                                                     |
| R1, wR2[I>2 $\sigma$ (I)] <sup>a</sup> | 0.0517, 0.0961                                      |
| R1 wR2(all data)                       | 0.0945_0.1181                                       |
| Ki, witz(all uala)                     | 0.0773, 0.1101                                      |

Table S1. Crystal data and structure refinement of KNa<sub>3</sub>Mn<sub>7</sub>(PO<sub>4</sub>)<sub>6</sub>.

 ${}^{a}R1 = \sum ||Fo| - |Fc|| / \sum |Fo|, wR2 = \{\sum w[(Fo)^{2} - (Fc)^{2}]^{2} / \sum w[(Fo)^{2}]^{2}\}^{1/2}$ 

| K     | $XNa_3Mn_7(PO_4)_6.$ |          |          |       |   |
|-------|----------------------|----------|----------|-------|---|
|       | Х                    | у        | Z        | U(eq) | — |
| К     | -5000                | 2622(3)  | -2500    | 80(1) | _ |
| Na(1) | -2500                | 2500     | -5000    | 46(2) |   |
| Na(2) | -187(3)              | 2395(3)  | -173(3)  | 39(1) |   |
| Mn(1) | 0                    | 1212(1)  | -2500    | 12(1) |   |
| Mn(2) | 0                    | 4176(1)  | -2500    | 16(1) |   |
| Mn(3) | -3176(1)             | 394(1)   | -3746(1) | 13(1) |   |
| Mn(4) | 1892(1)              | -6(1)    | -3599(1) | 13(1) |   |
| Mn(5) | -2500                | -2500    | -5000    | 61(1) |   |
| P(1)  | -878(1)              | -3(2)    | -4206(1) | 11(1) |   |
| P(2)  | -4065(1)             | -8(2)    | -5714(1) | 12(1) |   |
| P(3)  | -2113(2)             | 2707(2)  | -2298(1) | 13(1) |   |
| O(1)  | -1546(3)             | 597(4)   | -3703(3) | 15(1) |   |
| O(2)  | 339(3)               | 128(4)   | -3509(3) | 15(1) |   |
| O(3)  | -924(3)              | 2678(4)  | -2260(3) | 16(1) |   |
| O(4)  | -3459(4)             | 212(4)   | -6354(3) | 19(1) |   |
| O(5)  | -2112(4)             | 2008(4)  | -1465(4) | 21(1) |   |
| O(6)  | -1081(4)             | 717(4)   | -5065(3) | 20(1) |   |
| O(7)  | -2457(3)             | 4063(4)  | -2274(3) | 13(1) |   |
| O(8)  | -3960(4)             | 1114(4)  | -5121(3) | 20(1) |   |
| O(9)  | -3604(4)             | -1091(4) | -5068(3) | 19(1) |   |
| O(10) | -1131(4)             | -1359(4) | -4406(4) | 21(1) |   |
| O(11) | -2949(4)             | 2163(5)  | -3183(4) | 29(2) |   |
| O(12) | -4732(3)             | 238(4)   | -3605(3) | 20(1) |   |

Table S2. Atomic coordinates and equivalent isotropic displacement parameters of

S6

| K-O(10)#1          | 3.022(6)  | K-O(12)#4            | 3.239(6)  | K-O(2)#1          | 3.291(6)   |
|--------------------|-----------|----------------------|-----------|-------------------|------------|
| K-O(11)#3          | 3.325(5)  | Na(1)-O(8)#5         | 2.393(5)  | Na(1)-O(6)#3      | 2.726(5)   |
| Na(1)-O(1)#5       | 2.850(5)  | Na(2)-O(8)#6         | 2.269(5)  | Na(2)-O(10)#7     | 2.350(6)   |
| Na(2)-O(6)#8       | 2.404(6)  | Na(2)-O(9)#1         | 2.427(6)  | Na(2)-O(3)#3      | 3.094(7)   |
| Mn(1)-O(3)         | 2.133(5)  | Mn(1)-O(3)#8         | 2.133(5)  | Mn(1)-O(2)#8      | 2.181(5)   |
| Mn(1)-O(2)         | 2.181(5)  | Mn(1)-O(1)           | 2.280(4)  | Mn(1)-O(1)#3      | 2.280(4)   |
| Mn(2)-O(3)#3       | 2.159(5)  | Mn(2)-O(3)           | 2.159(5)  | Mn(2)-O(4)#6      | 2.232(4)   |
| Mn(2)-O(4)#5       | 2.232(4)  | Mn(2)-O(12)#1        | 2.252(5)  | Mn(2)-O(12)#9     | 2.252(5)   |
| Mn(3)-O(7)#10      | 2.094(5)  | Mn(3)-O(11)#3        | 2.099(5)  | Mn(3)-O(1)        | 2.130(5)   |
| Mn(3)-O(12)#3      | 2.154(5)  | Mn(3)-O(8)           | 2.170(5)  | Mn(4)-O(4)#11     | 2.105(5)   |
| Mn(4)-O(2)         | 2.111(5)  | Mn(4)-O(6)#11        | 2.119(5)  | Mn(4)-O(7)#12     | 2.192(5)   |
| Mn(4)-O(5)#8       | 2.213(5)  | Mn(5)-O(10)#13       | 2.085(4)  | Mn(5)-O(10)       | 2.085(4)   |
| Mn(5)-O(9)#13      | 2.088(5)  | Mn(5)-O(9)           | 2.088(5)  | P(1)-O(6)         | 1.510(5)   |
| P(1)-O(10)         | 1.522(5)  | P(1)-O(1)            | 1.550(5)  | P(1)-O(2)         | 1.554(4)   |
| P(2)-O(8)#3        | 1.520(5)  | P(2)-O(9)            | 1.528(5)  | P(2)-O(4)         | 1.543(5)   |
| P(2)-O(12)#15      | 1.547(5)  | P(3)-O(11)           | 1.527(5)  | P(3)-O(5)         | 1.532(6)   |
| P(3)-O(3)          | 1.543(5)  | P(3)-O(7)            | 1.551(5)  | O(3)-Mn(1)-O(3)   | 82.9(3)    |
| O(3)#3-Mn(1)-O(2)  | 88.66(19) | O(3)-Mn(1)-O(2)      | 146.74(8) | O(3)-Mn(1)-O(2)   | 88.66(9)   |
| O(2)#8-Mn(1)-O(2)  | 114.3(3)  | O(3)#3-Mn(1)-O(1)    | 89.38(17) | O(3)-Mn(1)-O(1)   | 116.91(8)  |
| O(2)#8-Mn(1)-O(1)  | 95.01(17) | O(2)-Mn(1)-O(1)      | 66.00(16) | O(2)-Mn(1)-O(1)   | 95.01(7)   |
| O(2)-Mn(1)-O(1)#3  | 66.00(16) | O(3)#8-Mn(1)-O(1)#8  | 89.38(17) | O(2)-Mn(1)-O(1)   | 95.01(7)   |
| O(1)-Mn(1)-O(1)#8  | 145.7(2)  | O(3)-Mn(2)-O(3)#8    | 81.7(2)   | O(3)-Mn(2)-O(4)   | 118.34(9)  |
| O(3)-Mn(2)-O(4)#5  | 88.75(17) | O(4)#6-Mn(2)-O(4)#5  | 145.2(3)  | O(3)-Mn(2)-O(12)  | 88.65(9)   |
| O(3)#8-Mn(2)-O(12) | 143.30(8) | O(4)#6-Mn(2)-O(12)#1 | 64.97(17) | O(4)-Mn(2)-O(12)  | 96.61(8)   |
| O(3)#8-Mn(2)-O(12) | 88.65(19) | O(4)#6-Mn(2)-O(12)#9 | 96.61(18) | O(12)-Mn(2)-O(2)  | 118.1(3)   |
| O(7)-Mn(3)-O(11)#3 | 111.0(2)  | O(11)-Mn(3)-O(1)#3   | 85.37(18) | O(7)-Mn(3)-O(1)   | 87.72(8)   |
| O(7)-Mn(3)-O(12)#3 | 88.09(18) | O(11)-Mn(3)-O(12)#3  | 90.50(19) | O(1)-Mn(3)-O(12)  | 172.6(9)   |
| O(7)-Mn(3)-O(12)   | 88.09(18) | O(7)#10-Mn(3)-O(8)#3 | 157.2(19) | O(11)-Mn(3)-O(8)  | 91.7(2)    |
| O(12)-Mn(3)-O(8)#3 | 92.37(18) | O(1)-Mn(3)-O(8)      | 93.84(19) | O(7)-Mn(3)-O(9)   | 95.36(8)   |
| O(11)#3-Mn(3)-O(9) | 152.7(2)  | O(1)-Mn(3)-O(9)      | 89.08(17) | O(12)-Mn(3)-O(9)  | 97.4(18)   |
| O(8)-Mn(3)-O(9)    | 61.98(17) | O(4)#11-Mn(4)-O(2)   | 177.28(9) | O(4)-Mn(4)-O(6)   | 92.1(19)   |
| O(2)-Mn(4)-O(6)#11 | 88.66(19) | O(2)-Mn(4)-O(7)#12   | 89.26(18) | O(6)-Mn(4)-O(7)   | 130.6(2)   |
| O(4)-Mn(4)-O(5)#8  | 89.75(18) | O(2)-Mn(4)-O(5)#8    | 92.32(18) | O(6)-Mn(4)-O(5)   | 114.50(19) |
| O(10)-Mn(5)-O(10)  | 180.0(2)  | O(10)-Mn(5)-O(9)#13  | 92.48(19) | O(10)-Mn(5)-O(9)  | 87.5(19)   |
| O(9)#13-Mn(5)-O(9) | 180.00(1) | O(10)-Mn(5)-O(5)#10  | 98.83(18) | O(9)-Mn(5)-O(5)   | 100.28(18) |
| O(9)-Mn(5)-O(5)#10 | 79.72(18) | O(10)#13-Mn(5)-O(5)  | 98.83(18) | O(10)-Mn(5)-O(5)  | 81.7(18)   |
| O(9)#13-Mn(5)-O(5) | 79.72(18) | O(6)-P(1)-O(10)      | 111.6(3)  | O(6)#3-P(1)-O(1)  | 108.5(3)   |
| O(6)-P(1)-O(1)#3   | 108.5(3)  | O(10)-P(1)-O(1)#3    | 113.3(3)  | O(6)-P(1)-O(2)    | 111.4(3)   |
| O(1)-P(1)-O(2)     | 103.1(3)  | O(8)-P(2)-O(9)       | 106.7(3)  | O(8)-P(2)-O(4)    | 110.1(3)   |
| O(9)-P(2)-O(4)     | 113.3(3)  | O(8)-P(2)-O(12)#15   | 112.6(3)  | O(9)-P(2)-O(12)   | 111.9(3)   |
| O(4)-P(2)-O(12)#15 | 102.4(3)  | O(11)-P(3)-O(5)      | 111.3(3)  | O(11)-P(3)-O(3)#3 | 112.2(3)   |
| O(5)-P(3)-O(3)#3   | 107.6(3)  | O(11)-P(3)-O(7)      | 106.4(3)  | O(5)-P(3)-O(7)    | 110.7(3)   |

Table S3. Selected bond lengths and angles of  $KNa_3Mn_7(PO_4)_6$ .

O(3)-P(3)-O(7) 108.6(3)

Symmetry transformations used to generate equivalent atoms: #1 -x-1/2,y+1/2,-z-1/2; #2 x-1/2,y+1/2,z; #3 x,y,z; #4 -x-1,y,-z-1/2; #5 -x-1/2,-y+1/2,-z-1; #6 x+1/2,-y+1/2,z+1/2; #7 x,-y,z+1/2; #8 -x,y,-z-1/2; #9 x+1/2,y+1/2,z #10 -x-1/2,y-1/2,-z-1/2; #11 -x,-y,-z-1; #12 x+1/2,y-1/2,z; #13 -x-1/2,-y-1/2,-z-1; #14 x,-y,z-1/2; #15 -x-1,-y,-z-1; #16 x-1/2,y-1/2,z.