1		Electronic Supplementary Information
2		
3	Fa	acile Fabrication of Chinese Lantern-like MnO@N-C: A High-
4		Performance Anode Material for Lithium-Ion Batteries
5		
6		Tian Qiu, Juan Wang, Yanluo Lu, Wensheng Yang*
7	St	tate Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical
8		Technology, Beijing, 100029, China
9		
10	Table	e of contents
11		Synthesis and the formation mechanism of Chinese lantern-like MnCO ₃
12		BET analysis of MnO@N-C and MnO
13	\triangleright	The morphology of MnO during cycling
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		

1 1. Synthesis and the formation mechanism of Chinese lantern-like MnCO₃

2 MnCO₃ precursor was synthesized as follows. Li₂CO₃ (0.2 mole) was added into the deionized water (100 mL) under stirring for 30 min to form Li₂CO₃ suspension (the 3 solubility of Li₂CO₃ is ~1.3 g at room temperature). Then, 100 mL MnSO₄·H₂O (0.2 4 mole) was added to the suspension using a peristaltic pump at a flow rate of 1.5 5 mL·min⁻¹. In the process of adding the MnSO₄ aqueous solution to the Li₂CO₃ 6 suspension, the intermediate products were obtained at 1, 5, 10, 20, 40 and 60 min, 7 FESEM images of which are shown in Fig. S1 in the SI. The surface of Li₂CO₃ was 8 smooth (Fig. S1a). In the Li₂CO₃ suspension, a part of Li₂CO₃ was dissolved into the 9 water to provide CO_3^{2-} and the remaining Li₂CO₃ was used as hard template. When 10 Mn²⁺ was added to the suspension, MnCO₃ nanoplates were formed on the surface of 11 the template (Li₂CO₃). With increasing the amount of Mn^{2+} , more and more $MnCO_3$ 12 nanoplates were interconnected to each other to form a self-supported three 13 dimensional structure and Li₂CO₃ was gradually dissolved at the same time. At last, a 14 Chinese lantern-like MnCO₃ with a hollow was formed. The schematic illustration of 15 the formation mechanism of the Chinese lantern-like MnCO3 was estimated in 16 Scheme S1. 17

18

1 2. BET analysis of MnO@N-C and MnO

- 2 N₂ adsorption-desorption isotherms of MnO@N-C and MnO are shown in Fig. S2.
- 3 Specific surface area (Brunauer-Emmett-Teller, BET) of MnO@N-C and MnO are
- 4 179.05 $m^2 \cdot g^{-1}$ and 2.38 $m^2 \cdot g^{-1}$, respectively.

6 Figure S2. N₂ adsorption-desorption isotherms of (a) MnO@N-C and (b) MnO, measured at 77 K.

7

8 3. The morphology of MnO during cycling

9 The structural morphologies of MnO following 0, 3, and 250 cycles are shown in Fig.
10 S3. The surface of MnO became more and more rough with the increase of cyclic
11 numbers, which indicated that the structure of MnO was damaged during the repeated
12 conversion reaction. The damaged structure of MnO led to the decreased reversible
13 capacity.

15