Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supporting Information for

High performance chemiresistive H₂S sensors using Ag-loaded SnO₂ yolk-shell nanostructures.

Ji-Wook Yoon,^a Young Jun Hong,^b Yun Chan Kang,^b and Jong-Heun Lee^{*,a}

^aDepartment of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu,

Seoul 136-713, Republic of Korea

^bDepartment of Chemical Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-

701, Republic of Korea

*Email: jongheun@korea.ac.kr

Fig. S1 Schematic diagram of the large scale ultrasonic spray pyrolysis process.

Fig. S2 SEM and TEM images of (a-c) SnO₂ spheres with dense inner structures (D-SnO₂) and (d-f) pure SnO₂ yolk-shell spheres (YS-SnO₂).

Fig. S3 X-ray diffraction patterns of (a) D-SnO₂, (b) YS-SnO₂, and (c) Ag-YS-SnO₂ spheres.

Fig. S4 X-ray photoelectron spectroscopy results of SnO₂ yolk-shell spheres loaded with 0.13 and 3.3 at% Ag: (a) full range spectra and (b) $3d_{3/2}$ and $3d_{5/2}$ peaks.

Fig. S5 Dynamic sensing transients to 5 ppm interference gases at 350°C: (a) D-SnO₂ spheres, (b) YS-SnO₂ spheres (a,b-1: C₂H₅OH; a,b-2: HCHO; a,b-3: trimethylamine; a,b-4: NH₃; a,b-5: benzene; a,b-6: toluene; a,b-7: o-xylene; a,b-8: H₂; a,b-9: CO).