IM-17: a new zeolitic material, synthesis and structure elucidation from electron diffraction ADT data and Rietveld analysis

Yannick Lorgouilloux, Mathias Dodin, Enrico Mugnaioli, Claire Marichal, Philippe Caullet, Nicolas Bats, Ute Kolb and Jean-Louis Paillaud*

* e-mail: jean-louis.paillaud@uha.fr

Supporting informations

Tables and Figures

Table S1: Crystal and Rietveld refinement data of calcined and partially rehydrated IM-17 in space group Cm	<i>mm</i> 2
Table S2: Atomic parameters of IM-17 in space group Cmmm.	3
Table S3: Selected bond distances (Å) and angles (°) for IM-17 in space group <i>Cmmm</i>	4
Table S4: Details on data collection and structure solution for IM-17 from ADT in space group Cm2m.	5
Table S5: The Shelx file produced by Sir2011 for IM-17 from ADT, space group Cm2m.	6
Table S6: Atomic parameters of IM-17 after the final Rietveld refinment in space group Amm2.	7
Table S7: Selected bond distances (Å) and angles (°) for IM-17 in space group Amm2.	9
Table S8: Coordination sequences and vertex symbols calculated for the framework topology of IM-17	10
Figure S1: Rietveld plots of calcined and rehydrated IM-17 in space group Cmmm.	11
Figure S2: ¹ H liquid NMR spectrum of IM-17 dissolved in HF and D ₂ O.	12
Figure S3: Projection of IM-17 solved in space group Cmmm from PXRD.	13
Figure S4: The four possibilities to remove disorder in IM-17.	13
Figure S5: Projection along the <i>b</i> -axis of IM-17 in space group <i>Pmma</i>	14
Figure S6: Projection along the <i>a</i> -axis of IM-17 in space group <i>Amm2</i>	14
Figure S7: STEM image of a typical crystal of IM-17 used for ADT acquisition.	15
Figure S8: Asymmetric unit of calcined IM-17 after Rietveld refinement in space group Amm2.	16
Figure S9: Short contacts between water molecules and the framework oxygen atoms in calcined IM-17.	16
Figure S10: N ₂ adsorption–desorption isotherms of calcined IM-17.	17

Chemical formula per asymmetric unit	$ (H_2O)_{0.37} [Ge_{2.30}Si_{8.70}O_{22}]^a$
Space group	Cmmm
λ (Å)	1.5406
<i>a</i> (Å)	39.0364(10)
b (Å)	22.2066(6)
c (Å)	12.6737(4)
$V(\dot{A}^3)$	10986.4(6)
Z	16
Temperature (K)	293
Number of data points	5057
Number of observed reflexions	2667
Number of structural parameters	240
Number of profile parameters	15
Number of restraints (bonds, angles)	140 (56, 84)
Number of constraints	65
$^{\mathrm{b}}R_{\mathrm{p}}$	0.0574
$^{\rm b} w R_{\rm p}$	0.0782
^b wR _{exp}	0.0207
${}^{\mathrm{b}}R_{\mathrm{F}}$	0.0443
${}^{\mathrm{b}}R_{\mathrm{F}}{}^{2}$	0.0648
$b \chi^2$	12.02
Largest difference peak and hole (\bar{e} Å ⁻³)	0.463, -0.393

Table S1:	Crystal and Rietveld refinement data of calcined and partially rehydrated IM-17 in
	space group <i>Cmmm</i> .

^a The number of water molecules is here the number of refined oxygen atoms without other considerations.

^b The definition of these residual values are given in the GSAS manual.¹

¹ A. C. Larson and R. B. Von Dreele, *General Structure Analysis System (GSAS)*, Los Alamos National Laboratory Report LAUR 86-748, 2004.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Atom	Wyck.	Site	S.O.F.	x/a	y/b	z/c	U [Å ²]
Si1 lfr 1 0.238 0.04099(15) 0.06339(24) 0.3737(6) 0.0765(8) Si2 lfr 1 0.06359(19) 0.15044(33) 0.1911(6) 0.0765(8) Si3 8p m 0.01417(19) 0.0693(4) 0 0.0765(8) Si4 lfr 1 0.854 0.12151(20) 0.2307(4) 0.1266(5) 0.0765(8) Ge4 lfr 1 0.446 0.12151(20) 0.2307(4) 0.1266(5) 0.0765(8) Si5 lfor 1 0.439 0.14046(16) 0.42895(26) 0.3761(6) 0.0765(8) Si6 lfor 1 0.461 0.14046(16) 0.42895(26) 0.3761(6) 0.0765(8) Si8 lfor 1 0.157 0.24213(21) 0.34822(32) 0.1897(6) 0.0765(8) Si8 lfor 1 0.157 0.24213(21) 0.34822(32) 0.3731(5) 0.0765(8) Si10 lfor 1 0.166 0.42828(25) 0.3731(5) <th< td=""><td>Gel</td><td>16r</td><td>1</td><td>0.762</td><td>0.04099(15)</td><td>0.06939(24)</td><td>0.3737(6)</td><td>0.0765(8)</td></th<>	Gel	16r	1	0.762	0.04099(15)	0.06939(24)	0.3737(6)	0.0765(8)
Si2 16r 1 0.06359(19) 0.15044(33) 0.1911(6) 0.0765(8) Si3 8p m 0.04147(19) 0.0695(4) 0 0.0765(8) Ge4 16r 1 0.854 0.2151(20) 0.2307(4) 0.1266(5) 0.0765(8) Si5 16r 1 0.140 0.12151(20) 0.2307(4) 0.1266(5) 0.0765(8) Si6 16r 1 0.404(16) 0.42895(26) 0.3761(6) 0.0765(8) Ge6 16r 1 0.4340 0.24213(21) 0.34822(32) 0.1897(6) 0.0765(8) Si8 16r 1 0.232 0.22287(16) 0.42828(25) 0.3731(5) 0.0765(8) Ge8 16r 1 0.232 0.22287(16) 0.42828(25) 0.3731(5) 0.0765(8) Si10 16r 1 0.768 0.22287(16) 0.42828(25) 0.3731(5) 0.0765(8) Si11 8p m 0 0.2335(5) 0.1287(6) 0.0765(8) Si12 8n m. 0 0.2335(5) 0.1284(6) 0.0765(8)	Si1	16r	1	0.238	0.04099(15)	0.06939(24)	0.3737(6)	0.0765(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Si2	16r	1		0.06359(19)	0.15044(33)	0.1911(6)	0.0765(8)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Si3	8p	m		0.04147(19)	0.0695(4)	0	0.0765(8)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Si4	16r	1	0.854	0.12151(20)	0.2307(4)	0.1266(5)	0.0765(8)
Si516r1 $0.09988(19)$ $0.36284(34)$ $0.1954(6)$ $0.0765(8)$ Si616r1 0.539 $0.14046(16)$ $0.42895(26)$ $0.3761(6)$ $0.0765(8)$ Ge616r1 0.461 $0.14046(16)$ $0.42895(26)$ $0.3761(6)$ $0.0765(8)$ Si78pm $0.13702(28)$ $0.42793(32)$ 0 $0.0765(8)$ Si816r1 0.1570 $0.24213(21)$ $0.34822(32)$ $0.1897(6)$ $0.0765(8)$ Ge816r1 0.157 $0.24213(21)$ $0.34822(32)$ $0.3731(5)$ $0.0765(8)$ Si916r1 0.232 $0.22287(16)$ $0.42828(25)$ $0.3731(5)$ $0.0765(8)$ Si1016r1 0.768 $0.22287(16)$ $0.42828(25)$ $0.3731(5)$ $0.0765(8)$ Si118pm $0.22187(29)$ $0.42840(33)$ 0 $0.0765(8)$ Si128nm 0 $0.2335(5)$ $0.1270(6)$ $0.0765(8)$ Si1316r1 0.5 $0.03877(21)$ $0.4296(4)$ $0.1264(6)$ $0.0765(8)$ Si1416r1 $0.0581(5)$ 0 $0.3601(25)$ $0.0284(20)$ O28nm $0.069(11)$ $1/2$ $0.0284(20)$ O416r1 $0.06314(31)$ $0.1201(5)$ $0.376(6)$ $0.0284(20)$ O516r1 $0.05730(35)$ $0.1075(5)$ $0.1787(10)$ $0.693(20)$ O616r1 $0.07571(19)$ 0 $0.693(20)$ <	Ge4	16r	1	0.146	0.12151(20)	0.2307(4)	0.1266(5)	0.0765(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Si5	16r	1		0.09988(19)	0.36284(34)	0.1954(6)	0.0765(8)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Si6	16r	1	0.539	0.14046(16)	0.42895(26)	0.3761(6)	0.0765(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ge6	16r	1	0.461	0.14046(16)	0.42895(26)	0.3761(6)	0.0765(8)
Si8 $1 {\rm or}$ 1 0.843 $0.24213(21)$ $0.34822(32)$ $0.1897(6)$ $0.0765(8)$ Ge8 $1 {\rm or}$ 1 0.157 $0.24213(21)$ $0.34822(32)$ $0.1897(6)$ $0.0765(8)$ Si9 $1 {\rm fr}$ 1 0.232 $0.22287(16)$ $0.42828(25)$ $0.3731(5)$ $0.0765(8)$ Ge9 $1 {\rm fr}$ 1 0.768 $0.22287(16)$ $0.42828(25)$ $0.3731(5)$ $0.0765(8)$ Si10 $1 {\rm fr}$ 1 $0.19973(22)$ $0.2408(4)$ $0.1257(5)$ $0.0765(8)$ Si118pm $0.21879(29)$ $0.42840(33)$ 0 $0.0765(8)$ Si128nm. 0 $0.2335(5)$ $0.1285(6)$ $0.0765(8)$ Si1416r1 0.5 $0.02180(21)$ $0.3670(5)$ $0.1270(6)$ $0.0765(8)$ Si1416r1 0.5 $0.02180(21)$ $0.3670(5)$ $0.1284(6)$ $0.0765(8)$ Si1416r1 0.5 $0.02180(21)$ $0.3670(5)$ $0.1284(2)$ $0.0284(20)$ O28nm. 0 $0.069(1)$ $0.3345(17)$ $0.0284(20)$ O28nm. 0 $0.069(1)$ $0.3345(17)$ $0.0284(20)$ O416r1 $0.0581(5)$ 0 $0.3060(26)$ $0.0284(20)$ O516r1 $0.0521(10)$ 0 $0.0693(20)$ O616r1 $0.0521(10)$ 0 $0.0693(20)$ O716r1 $0.1072(4)$ $0.2175(19)$ 0 0.0	Si7	8p	m		0.13702(28)	0.42793(32)	0	0.0765(8)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Si8	16r	1	0.843	0.24213(21)	0.34822(32)	0.1897(6)	0.0765(8)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ge8	16r	1	0.157	0.24213(21)	0.34822(32)	0.1897(6)	0.0765(8)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Si9	16r	1	0.232	0.22287(16)	0.42828(25)	0.3731(5)	0.0765(8)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ge9	16r	1	0.768	0.22287(16)	0.42828(25)	0.3731(5)	0.0765(8)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Si10	16r	1		0.19973(22)	0.2408(4)	0.1257(5)	0.0765(8)
Si12AnD $0.2335(5)$ $0.1285(6)$ $0.0765(8)$ Si1316r10.5 $0.02180(21)$ $0.3670(5)$ $0.1270(6)$ $0.0765(8)$ Si1416r10.5 $0.03877(21)$ $0.4296(4)$ $0.1264(6)$ $0.0765(8)$ O18qm $0.0430(6)$ $0.0909(11)$ $1/2$ $0.0284(20)$ O28nm 0 $0.069(1)$ $0.3345(17)$ $0.0284(20)$ O38o.m. $0.0581(5)$ 0 $0.3601(26)$ $0.0284(20)$ O416r1 $0.06314(31)$ $0.1201(5)$ $0.3056(9)$ $0.0284(20)$ O516r1 $0.05730(35)$ $0.107(5)$ $0.1787(10)$ $0.693(20)$ O616r1 $0.05730(35)$ $0.107(5)$ $0.1738(13)$ $0.0693(20)$ O716r1 $0.0521(10)$ 0 0 $0.0693(20)$ O84g2mm $0.0521(10)$ 0 $0.0693(20)$ O94im2m 0 $0.0757(19)$ 0 $0.0693(20)$ O1116r1 $0.16127(23)$ $0.2227(6)$ $0.1542(14)$ $0.0693(20)$ O128pm $0.1162(6)$ $0.2320(11)$ 0 $0.0693(20)$ O1316r1 $0.2198(4)$ $0.3085(5)$ $0.1034(5)$ $0.0693(20)$ O1416r1 $0.2108(4)$ $0.305(6)$ $0.1900(12)$ $0.0693(20)$ O1516r1 $0.22323(34)$ $0.1857(7)$ $0.1594(13)$ $0.0693(20)$ <td>Si11</td> <td>8p</td> <td>m</td> <td></td> <td>0.21879(29)</td> <td>0.42840(33)</td> <td>0</td> <td>0.0765(8)</td>	Si11	8p	m		0.21879(29)	0.42840(33)	0	0.0765(8)
Si1316r10.50.02180(21)0.3670(5)0.1270(6)0.0765(8)Si1416r10.50.03877(21)0.4296(4)0.1264(6)0.0765(8)O18qm0.0430(6)0.0909(11)1/20.0284(20)O28nm00.069(1)0.3345(17)0.0284(20)O38o.m.0.0581(5)00.3601(26)0.0284(20)O416r10.06314(31)0.1201(5)0.3056(9)0.0284(20)O516r10.05730(35)0.1007(5)0.1787(10)0.0693(20)O616r10.05730(35)0.1007(5)0.1738(13)0.0693(20)O716r10.10113(26)0.1756(5)0.1738(13)0.0693(20)O94im2m00.0757(19)00.0693(20)O1016r10.1072(4)0.2217(6)0.1542(14)0.0693(20)O1116r10.16127(23)0.2227(6)0.1542(14)0.0693(20)O128pm0.1162(6)0.2320(11)00.0693(20)O1316r10.11947(32)0.3985(5)0.1034(5)0.0693(20)O1416r10.2108(4)0.3005(6)0.1900(12)0.0693(20)O1516r10.2108(4)0.3005(6)0.1900(12)0.0693(20)O1516r10.2108(4)0.3005(6)0.1900(12)0.0693(20)O1516r10.2108(4)0.	Si12	8n	m		0	0.2335(5)	0.1285(6)	0.0765(8)
Sil416r10.50.03877(21)0.4296(4)0.1264(6)0.0765(8)O18qm0.0430(6)0.0909(11)1/20.0284(20)O28nm.00.069(1)0.3345(17)0.0284(20)O380.m.0.0581(5)00.3601(26)0.0284(20)O416r10.06314(31)0.1201(5)0.3056(9)0.0284(20)O516r10.03415(19)0.2019(5)0.1787(10)0.0693(20)O616r10.05730(35)0.1007(5)0.1034(5)0.0693(20)O716r10.05730(35)0.1007(5)0.1034(5)0.0693(20)O84g2mm0.0521(10)000.0693(20)O94im2m00.0757(19)00.0693(20)O1016r10.1072(4)0.2917(4)0.1796(13)0.0693(20)O1116r10.16127(23)0.2227(6)0.1542(14)0.0693(20)O128pm0.1162(6)0.2320(11)00.0693(20)O1316r10.11947(32)0.3985(5)0.1034(5)0.0693(20)O1416r10.2128(4)0.3005(6)0.1900(12)0.0693(20)O1516r10.22323(34)0.1857(7)0.1594(13)0.0693(20)O1516r10.22323(34)0.1857(7)0.1594(13)0.0693(20)O1616r10.22323(34)0.1857(7)0.1594(13)	Si13	16r	1	0.5	0.02180(21)	0.3670(5)	0.1270(6)	0.0765(8)
O1 $8q$ $0.0430(6)$ $0.0909(1)$ $1/2$ $0.0100(0)$ O2 $8n$ $m.$ 0 $0.0430(6)$ $0.0909(1)$ $1/2$ $0.0284(20)$ O3 $8o$.m. $0.0581(5)$ 0 $0.33601(26)$ $0.0284(20)$ O4 $16r$ 1 $0.06314(31)$ $0.1201(5)$ $0.3056(9)$ $0.0284(20)$ O5 $16r$ 1 $0.06314(31)$ $0.1201(5)$ $0.3056(9)$ $0.0284(20)$ O6 $16r$ 1 $0.05730(35)$ $0.1007(5)$ $0.1787(10)$ $0.0693(20)$ O6 $16r$ 1 $0.05730(35)$ $0.1007(5)$ $0.1034(5)$ $0.0693(20)$ O7 $16r$ 1 $0.10113(26)$ $0.1756(5)$ $0.1738(13)$ $0.0693(20)$ O8 $4g$ $2mm$ $0.0521(10)$ 0 0 $0.0693(20)$ O9 $4i$ $m2m$ 0 $0.0757(19)$ 0 $0.0693(20)$ O10 $16r$ 1 $0.16127(23)$ $0.2227(6)$ $0.1542(14)$ $0.0693(20)$ O11 $16r$ 1 $0.11483(33)$ $0.3848(6)$ $0.3077(9)$ $0.0693(20)$ O12 $8p$ m $0.11483(33)$ $0.3848(6)$ $0.3077(9)$ $0.0693(20)$ O14 $16r$ 1 $0.2108(4)$ $0.3005(6)$ $0.1900(12)$ $0.0693(20)$ O15 $16r$ 1 $0.2323(34)$ $0.1857(7)$ $0.1594(13)$ $0.0693(20)$ O16 $16r$ 1 $0.2323(34)$ $0.1857(7)$ $0.1594(13)$ $0.0693(20)$ O17 </td <td>Si14</td> <td>16r</td> <td>1</td> <td>0.5</td> <td>0.03877(21)</td> <td>0.4296(4)</td> <td>0.12(6)</td> <td>0.0765(8)</td>	Si14	16r	1	0.5	0.03877(21)	0.4296(4)	0.12(6)	0.0765(8)
O28nm. O $O.059(1)$ $O.2345(17)$ $O.0284(20)$ $O3$ 80.m. $O.0581(5)$ O $O.3601(26)$ $O.0284(20)$ $O4$ 16r1 $O.06314(31)$ $O.1201(5)$ $O.3056(9)$ $O.0284(20)$ $O5$ 16r1 $O.03415(19)$ $O.2019(5)$ $O.1787(10)$ $O.0693(20)$ $O6$ 16r1 $O.05730(35)$ $O.1007(5)$ $O.1034(5)$ $O.0693(20)$ $O7$ 16r1 $O.05730(35)$ $O.1007(5)$ $O.1738(13)$ $O.0693(20)$ $O8$ 4g2mm $O.0521(10)$ O O $O.0693(20)$ $O9$ 4im2m O $O.0757(19)$ O $O.0693(20)$ $O10$ 16r1 $O.1072(4)$ $O.2217(4)$ $O.1796(13)$ $O.693(20)$ $O11$ 16r1 $O.16127(23)$ $O.2227(6)$ $O.1542(14)$ $O.693(20)$ $O12$ 8p.m $O.1162(6)$ $O.2320(11)$ O $O.693(20)$ $O13$ 16r1 $O.11947(32)$ $O.3985(5)$ $O.1034(5)$ $O.693(20)$ $O14$ 16r1 $O.2032(6)$ $O.2522(10)$ O $O.693(20)$ $O15$ 16r1 $O.22323(34)$ $O.1857(7)$ $O.1594(13)$ $O.693(20)$ $O17$ 8p.m $O.12287(5)$ $I/2$ $O.3646(26)$ $O.693(20)$ $O18$ 16r1 $O.1287(5)$ $I/2$ $O.3646(26)$ $O.693(20)$ $O18$ 16r1 $O.1287(5)$ $I/2$ $O.36$	01	80	m	0.0	0.0430(6)	0.0909(11)	1/2	0.0284(20)
O_3 80.m. $0.0581(5)$ $0.050(1)$ $0.050(1)$ $0.0284(20)$ O_4 16r1 $0.06314(31)$ $0.1201(5)$ $0.3056(9)$ $0.0284(20)$ O_5 16r1 $0.03415(19)$ $0.2019(5)$ $0.1787(10)$ $0.0693(20)$ O_6 16r1 $0.05730(35)$ $0.1007(5)$ $0.1034(5)$ $0.0693(20)$ O_7 16r1 $0.05730(35)$ $0.1007(5)$ $0.1034(5)$ $0.0693(20)$ O_7 16r1 $0.05730(35)$ $0.107(5)$ $0.1738(13)$ $0.0693(20)$ O_8 4g2mm $0.0521(10)$ 00 $0.0693(20)$ O_9 4im2m0 $0.0757(19)$ 0 $0.0693(20)$ $O10$ 16r1 $0.1072(4)$ $0.2217(4)$ $0.1796(13)$ $0.0693(20)$ $O11$ 16r1 $0.16127(23)$ $0.2227(6)$ $0.1542(14)$ $0.0693(20)$ $O12$ 8pm $0.1162(6)$ $0.2320(11)$ 0 $0.0693(20)$ $O13$ 16r1 $0.11947(32)$ $0.3985(5)$ $0.1034(5)$ $0.0693(20)$ $O14$ 16r1 $0.2108(4)$ $0.3005(6)$ $0.1900(12)$ $0.0693(20)$ $O15$ 16r1 $0.22323(34)$ $0.1857(7)$ $0.1594(13)$ $0.0693(20)$ $O18$ 16r1 $0.22323(34)$ $0.1857(7)$ $0.1594(13)$ $0.0693(20)$ $O18$ 16r1 $0.2323(5)$ $1/2$ $0.3646(26)$ $0.0693(20)$ $O19$ 8q.m $0.$	02	8n	m		0	0.069(1)	0.3345(17)	0.0284(20)
04 $16r$ 1 $0.06314(31)$ $0.1201(5)$ $0.3056(9)$ $0.0284(20)$ 05 $16r$ 1 $0.03415(19)$ $0.2019(5)$ $0.1787(10)$ $0.0693(20)$ 06 $16r$ 1 $0.05730(35)$ $0.1007(5)$ $0.1034(5)$ $0.0693(20)$ 07 $16r$ 1 $0.05730(35)$ $0.107(5)$ $0.1034(5)$ $0.0693(20)$ 07 $16r$ 1 $0.0521(10)$ 0 0 $0.0693(20)$ 09 $4i$ m2m 0 $0.0757(19)$ 0 $0.0693(20)$ 010 $16r$ 1 $0.1072(4)$ $0.2217(4)$ $0.1796(13)$ $0.0693(20)$ 011 $16r$ 1 $0.16127(23)$ $0.2227(6)$ $0.1542(14)$ $0.0693(20)$ 011 $16r$ 1 $0.1162(6)$ $0.2320(11)$ 0 $0.0693(20)$ 013 $16r$ 1 $0.11947(32)$ $0.3985(5)$ $0.1034(5)$ $0.0693(20)$ 014 $16r$ 1 $0.2108(4)$ $0.3005(6)$ $0.1900(12)$ $0.0693(20)$ 015 $16r$ 1 $0.2232(34)$ $0.1857(7)$ $0.1594(13)$ $0.0693(20)$ 016 $16r$ 1 $0.22323(34)$ $0.1857(7)$ $0.1594(13)$ $0.0693(20)$ 017 $8p$ $.m$ $0.1328(6)$ $0.4078(12)$ $1/2$ $0.0693(20)$ 018 $16r$ 1 $0.1287(5)$ $1/2$ $0.3646(26)$ $0.0693(20)$ 020 $8o$ $m.$ $0.1287(5)$ $1/2$ $0.3405(14)$ $0.0693(20)$ <	03	80	m		0.0581(5)	0	0.3601(26)	0.0284(20)
051611 $0.03415(19)$ $0.2019(5)$ $0.0377(10)$ $0.0693(20)$ 0616r1 $0.03415(19)$ $0.2019(5)$ $0.1787(10)$ $0.0693(20)$ 0716r1 $0.05730(35)$ $0.1007(5)$ $0.1034(5)$ $0.0693(20)$ 084g2mm $0.0521(10)$ 00 $0.0693(20)$ 094im2m0 $0.0757(19)$ 0 $0.0693(20)$ 01016r1 $0.1072(4)$ $0.2917(4)$ $0.1796(13)$ $0.0693(20)$ 01116r1 $0.16127(23)$ $0.2227(6)$ $0.1542(14)$ $0.0693(20)$ 0128pm $0.1162(6)$ $0.2320(11)$ 0 $0.0693(20)$ 01316r1 $0.11483(33)$ $0.3848(6)$ $0.3077(9)$ $0.0693(20)$ 01416r1 $0.11947(32)$ $0.3985(5)$ $0.1034(5)$ $0.0693(20)$ 01516r1 $0.2108(4)$ $0.3005(6)$ $0.1900(12)$ $0.693(20)$ 0178pm $0.2032(6)$ $0.2522(10)$ 0 $0.6693(20)$ 01816r1 $0.22323(34)$ $0.1857(7)$ $0.1594(13)$ $0.693(20)$ 0198qm $0.1287(5)$ $1/2$ $0.3646(26)$ $0.693(20)$ 02080.m. $0.1287(5)$ $1/2$ $0.3646(26)$ $0.693(20)$ 02116r1 $0.18109(19)$ $0.4208(9)$ $0.3405(14)$ $0.0693(20)$	04	16r	1		0.06314(31)	0 1201(5)	0.3056(9)	0.0284(20)
06 $16r$ 1 $0.05730(35)$ $0.1007(5)$ $0.1034(5)$ $0.0693(20)$ 07 $16r$ 1 $0.10113(26)$ $0.1756(5)$ $0.1034(5)$ $0.0693(20)$ 08 $4g$ $2mm$ $0.0521(10)$ 0 0 $0.0693(20)$ 09 $4i$ $m2m$ 0 $0.0757(19)$ 0 $0.0693(20)$ 010 $16r$ 1 $0.1072(4)$ $0.2917(4)$ $0.1796(13)$ $0.0693(20)$ 011 $16r$ 1 $0.16127(23)$ $0.2227(6)$ $0.1542(14)$ $0.0693(20)$ 012 $8p$ m $0.1162(6)$ $0.2320(11)$ 0 $0.0693(20)$ 013 $16r$ 1 $0.11947(32)$ $0.3985(5)$ $0.1034(5)$ $0.0693(20)$ 014 $16r$ 1 $0.11947(32)$ $0.3985(5)$ $0.1034(5)$ $0.0693(20)$ 015 $16r$ 1 $0.2108(4)$ $0.3005(6)$ $0.1900(12)$ $0.693(20)$ 016 $16r$ 1 $0.22323(34)$ $0.1857(7)$ $0.1594(13)$ $0.693(20)$ 017 $8p$ m $0.1287(5)$ $1/2$ $0.3646(26)$ $0.0693(20)$ 019 $8q$ m $0.1287(5)$ $1/2$ $0.3646(26)$ $0.0693(20)$ 020 $8o$.m. $0.1287(57)$ $0.1480(9)$ $0.3405(14)$ $0.0693(20)$	05	16r	1		0.03415(19)	0.1201(5) 0.2019(5)	0.1787(10)	0.0693(20)
07 $16r$ 1 $0.0575(05)$ $0.1076(5)$ $0.1054(5)$ $0.059(2)$ 07 $16r$ 1 $0.10113(26)$ $0.1756(5)$ $0.1738(13)$ $0.0693(20)$ 08 $4g$ $2mm$ $0.0521(10)$ 0 0 $0.0693(20)$ 09 $4i$ $m2m$ 0 $0.0757(19)$ 0 $0.0693(20)$ 010 $16r$ 1 $0.1072(4)$ $0.2917(4)$ $0.1796(13)$ $0.0693(20)$ 011 $16r$ 1 $0.16127(23)$ $0.2227(6)$ $0.1542(14)$ $0.0693(20)$ 012 $8p$ m $0.1162(6)$ $0.2320(11)$ 0 $0.0693(20)$ 013 $16r$ 1 $0.11947(32)$ $0.3985(5)$ $0.1034(5)$ $0.0693(20)$ 014 $16r$ 1 $0.2108(4)$ $0.3005(6)$ $0.1900(12)$ $0.0693(20)$ 016 $16r$ 1 $0.22323(34)$ $0.1857(7)$ $0.1594(13)$ $0.0693(20)$ 017 $8p$ m $0.1287(5)$ $1/2$ $0.3646(26)$ $0.0693(20)$ 020 $8o$.m. $0.1287(5)$ $1/2$ $0.3646(26)$ $0.0693(20)$	06	16r	1		0.05730(35)	0.2017(5) 0.1007(5)	0.1/0/(10)	0.0693(20)
0.1 1.1 $0.1011(20)$ $0.115(20)$ $0.1150(15)$ $0.0503(20)$ 0.8 $4g$ $2mm$ $0.0521(10)$ 0 0 $0.0693(20)$ 0.9 $4i$ $m2m$ 0 $0.0757(19)$ 0 $0.0693(20)$ 010 $16r$ 1 $0.1072(4)$ $0.2917(4)$ $0.1796(13)$ $0.0693(20)$ 011 $16r$ 1 $0.16127(23)$ $0.2227(6)$ $0.1542(14)$ $0.0693(20)$ 012 $8p$ m $0.1162(6)$ $0.2320(11)$ 0 $0.0693(20)$ 013 $16r$ 1 $0.11947(32)$ $0.3985(5)$ $0.1034(5)$ $0.0693(20)$ 014 $16r$ 1 $0.05893(21)$ $0.3751(4)$ $0.1873(12)$ $0.0693(20)$ 015 $16r$ 1 $0.2108(4)$ $0.3005(6)$ $0.1900(12)$ $0.0693(20)$ 016 $16r$ 1 $0.22323(34)$ $0.1857(7)$ $0.1594(13)$ $0.0693(20)$ 018 $16r$ 1 $0.22323(34)$ $0.1857(7)$ $0.1594(13)$ $0.0693(20)$ 019 $8q$ m $0.1287(5)$ $1/2$ $0.3646(26)$ $0.0693(20)$ 020 $8o$.m. $0.1287(5)$ $1/2$ $0.3405(14)$ $0.0693(20)$ 021 $16r$ 1 $0.18109(19)$ $0.4208(9)$ $0.3405(14)$ $0.0693(20)$	07	16r	1		0.10113(26)	0.1756(5)	0.1034(3) 0.1738(13)	0.0693(20)
09 $4i$ $m2m$ 0 $0.0757(19)$ 0 $0.0693(20)$ 010 $16r$ 1 $0.1072(4)$ $0.2917(4)$ $0.1796(13)$ $0.0693(20)$ 011 $16r$ 1 $0.16127(23)$ $0.2227(6)$ $0.1542(14)$ $0.0693(20)$ 012 $8p$ m $0.1162(6)$ $0.2320(11)$ 0 $0.0693(20)$ 013 $16r$ 1 $0.11483(33)$ $0.3848(6)$ $0.3077(9)$ $0.0693(20)$ 014 $16r$ 1 $0.11947(32)$ $0.3985(5)$ $0.1034(5)$ $0.0693(20)$ 015 $16r$ 1 $0.05893(21)$ $0.3751(4)$ $0.1873(12)$ $0.0693(20)$ 016 $16r$ 1 $0.2108(4)$ $0.3005(6)$ $0.1900(12)$ $0.0693(20)$ 017 $8p$ m $0.2032(6)$ $0.2522(10)$ 0 $0.0693(20)$ 018 $16r$ 1 $0.22323(34)$ $0.1857(7)$ $0.1594(13)$ $0.0693(20)$ 019 $8q$ m $0.1287(5)$ $1/2$ $0.3646(26)$ $0.0693(20)$ 020 $8o$.m. $0.1287(5)$ $1/2$ $0.3646(26)$ $0.0693(20)$ 021 $16r$ 1 $0.18109(19)$ $0.4208(9)$ $0.3405(14)$ $0.0693(20)$	08	<u></u> 4σ	2mm		0.0521(10)	0	0	0.0693(20)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	09	5 4i	m2m		0	0.0757(19)	0	0.0693(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	010	16r	1		0.1072(4)	0.0757(1)	0 1796(13)	0.0693(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	011	16r	1		0.16127(23)	0.227(6)	0.1542(14)	0.0693(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	012	8n	m		0.1162(6)	0.2227(0) 0.2320(11)	0	0.0693(20)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	013	16r	1		0.1102(0) 0.11483(33)	0.3848(6)	0 3077(9)	0.0693(20)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	014	16r	1		0.11947(32)	0.3985(5)	0.1034(5)	0.0693(20)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	015	16r	1		0.05893(21)	0.3751(4)	0.1873(12)	0.0693(20)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	016	16r	1		0.000000(21)	0.3005(6)	0.1900(12)	0.0693(20)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	017	8n	m		0.2100(1) 0.2032(6)	0.2522(10)	0	0.0693(20)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	018	16r	1		0.2032(0) 0.22323(34)	0.1857(7)	0.1594(13)	0.0693(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	019	80	m		0.1368(6)	0.4078(12)	1/2	0.0693(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	020	80	m		0.1287(5)	1/2	0.3646(26)	0.0693(20)
	021	16r	1		0.1207(0) 0.18109(19)	0.4208(9)	0.3405(14)	0.0693(20)
$U_{1/2}$ xn m $U_{1/2}/(94(27)) = 0.4149(13) = 0.0000000000000000000000000000000000$	022	8n	m		0.17794(27)	0.4149(13)	0	0.0693(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	023	0p 4σ	2mm		0.1308(8)	1/2	0	0.0693(20)
024 16 1 0.24664(32) 0.3804(6) 0.3030(9) 0.0693(20)	023	16r	1		0.1300(0) 0.24664(32)	0.3804(6)	0 3030(9)	0.0693(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	025	16r	1		0.23591(33)	0.3004(0) 0.3994(5)	0.3030(5) 0.1035(5)	0.0693(20)
225 101 $102554(5)$ $1/2$ $0.3528(26)$ $0.665(20)$	026	80	m		0.2354(5)	1/2	0.3528(26)	0.0693(20)
0.25 0.0 $0.055(2)$ $1/2$ $0.055(2)$	027	8a			0.2334(5) 0.2283(6)	0.4109(13)	1/2	0.0693(20)
028 $4g$ $2mm$ $0.225(0)$ $0.119(15)$ $1/2$ $0.005(25)$	028	Δσ	2mm		0.2253(9)	1/2	0	0.0693(20)
0.20 + 7g $2 mm$ $0.2253(7) 172 = 0.0053(20)$	020	т <u>е</u> 8n	m		0.2233(7)	0.3056(5)	0 1576(20)	0.0093(20)
0.20 di m. 0 $0.204(14)$ 0 $0.663(20)$	030	4i	m2m		0	0.3030(3) 0.2244(14)	0	0.0693(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	031	8n	m	0.5	0.0276(7)	0.3682(15)	0	0.0693(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	032	8n	i m	0.5	0.0270(7)	0.3002(13) 0.4248(6)	0 1612(19)	0.0093(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	033	80	m	0.5	0.0511(5)	1/2	0.1561(26)	0.0693(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	034	8n		0.5	0.0311(3) 0.0414(8)	0.4182(15)	0	0.0093(20)
Ow1 = 16r = 1 = 0.374 = 0.1654(21) = 0.0556(27) = 0.407(7) = 0.1250	Ow1	0p 16r	1	0.374	0.1654(21)	0.0556(27)	0.407(7)	0.1250

Table S2: Atomic parameters of IM-17 in space group *Cmmm*. The Si13 and Si14 sitescorrespond to Si17 and Si18 in Table S5.

Ge1 Si1	04	1.6615(130)	01	1.6723(103)	106.213(557)	 Si7	014	1.6167(102)	014	1.6167(102)	108.303(333)
	04	1.6615(130)	02	1.6755(88)	110.271(528)		014	1.6167(102)	O23	1.6187(86)	109.640(373)
	04	1.6615(130)	O3	1.6883(100)	111.081(491)		014	1.6167(102)	O22	1.6234(159)	110.177(410)
	01	1.6723(103)	02	1.6755(88)	109.275(373)		014	1.6167(102)	O23	1.6187(86)	109.640(373)
	01	1.6723(103)	O3	1.6883(100)	109.869(337)		O14	1.6167(102)	O22	1.6234(159)	110.177(410)
	02	1.6755(88)	O3	1.6883(100)	110.050(318)		O23	1.6187(86)	O22	1.6234(159)	108.894(854)
Ge9 Si9	O27	1.6675(97)	O24	1.6676(139)	107.190(523)	Si8 Ge8	O18	1.5948(161)	O25	1.5950(118)	107.499(828)
	O27	1.6675(97)	O26	1.6858(94)	109.207(328)		O18	1.5948(161)	O24	1.6136(140)	109.327(851)
	O27	1.6675(97)	O21	1.6906(106)	109.609(578)		O18	1.5948(161)	O16	1.6182(166)	109.395(875)
	O24	1.6676(139)	O26	1.6858(94)	111.077(556)		O25	1.5950(118)	O24	1.6136(140)	108.093(651)
	O24	1.6676(139)	O21	1.6906(106)	110.117(633)		O25	1.5950(118)	O16	1.6182(166)	110.681(766)
	O26	1.6858(94)	O21	1.6906(106)	109.598(524)		O24	1.6136(140)	O16	1.6182(166)	111.739(815)
Si2	07	1.5836(128)	O6	1.5861(118)	106.974(769)	Si10	O18	1.5878(172)	011	1.5956(131)	106.774(784)
	07	1.5836(128)	04	1.6000(136)	106.517(791)		O18	1.5878(172)	O16	1.6151(163)	110.014(905)
	07	1.5836(128)	05	1.6283(120)	113.089(635)		O18	1.5878(172)	017	1.6188(76)	109.688(719)
	06	1.5861(118)	04	1.6000(136)	109.914(647)		011	1.5956(131)	O16	1.6151(163)	110.140(849)
	06	1.5861(118)	05	1.6283(120)	108.170(724)		011	1.5956(131)	017	1.6188(76)	109.932(682)
	O4	1.6000(136)	O5	1.6283(120)	112.044(727)		O16	1.6151(163)	O17	1.6188(76)	110.231(662)
Si3	08	1.5982(134)	06	1.606(10)	108.464(377)	Si11	O25	1.6069(103)	O25	1.6069(103)	109.439(333)
	08	1.5982(134)	06	1.606(10)	108.464(377)		O25	1.6069(103)	O28	1.6102(93)	109.276(375)
	08	1.5982(134)	09	1.6247(82)	109.910(461)		O25	1.6069(103)	O22	1.6226(162)	109.554(424)
	06	1.606(10)	06	1.606(10)	109.369(334)		O25	1.6069(103)	O28	1.6102(93)	109.276(375)
	06	1.606(10)	09	1.6247(82)	110.294(442)		O25	1.6069(103)	O22	1.6226(162)	109.554(424)
	06	1.606(10)	09	1.6247(82)	110.294(442)		O28	1.6102(93)	O22	1.6226(162)	109.728(856)
Si4 Ge4	07	1.5773(144)	011	1.6009(124)	108.666(705)	Si12	O5	1.6353(107)	O5	1.6353(107)	109.210(381)
	07	1.5773(144)	O10	1.6119(142)	108.607(740)		O5	1.6353(107)	O30	1.6411(86)	109.466(422)
	07	1.5773(144)	012	1.6181(71)	108.983(702)		O5	1.6353(107)	O29	1.6430(164)	109.319(377)
	O11	1.6009(124)	O10	1.6119(142)	109.767(798)		O5	1.6353(107)	O30	1.6411(86)	109.466(422)
	011	1.6009(124)	012	1.6181(71)	110.050(662)		O5	1.6353(107)	O29	1.6430(164)	109.319(377)
	O10	1.6119(142)	O12	1.6181(71)	110.722(677)		O30	1.6411(86)	O29	1.6430(164)	110.045(849)
Si5	O14	1.6036(120)	O13	1.6137(140)	108.639(648)	Si13	O32	1.5999(161)	O31	1.6256(85)	109.219(477)
	O14	1.6036(120)	O10	1.6179(120)	107.938(705)		O32	1.5999(161)	015	1.6484(130)	104.748(564)
	O14	1.6036(120)	O15	1.6248(111)	109.907(700)		O32	1.5999(161)	O29	1.6534(150)	108.923(637)
	O13	1.6137(140)	O10	1.6179(120)	109.900(776)		O31	1.6256(85)	015	1.6484(130)	109.559(680)
	O13	1.6137(140)	O15	1.6248(111)	111.155(734)		O31	1.6256(85)	O29	1.6534(150)	108.508(473)
	O10	1.6179(120)	O15	1.6248(111)	109.242(709)		O15	1.6484(130)	O29	1.6534(150)	115.710(597)
Si6 Ge6	O19	1.6452(108)	O13	1.6473(142)	106.237(569)	Si14	O32	1.5800(106)	O34	1.6251(94)	108.976(455)
	O19	1.6452(108)	O20	1.6497(85)	109.463(361)		O32	1.5800(106)	O15	1.6370(135)	106.201(554)
	O19	1.6452(108)	O21	1.6589(109)	108.148(629)		O32	1.5800(106)	O33	1.6785(128)	105.957(475)
	O13	1.6473(142)	O20	1.6497(85)	110.715(572)		O34	1.6251(94)	O15	1.6370(135)	108.617(688)
	O13	1.6473(142)	O21	1.6589(109)	111.878(649)		O34	1.6251(94)	O33	1.6785(128)	110.367(462)
	O20	1.6497(85)	O21	1.6589(109)	110.266(542)		O15	1.6370(135)	O33	1.6785(128)	116.423(605)

 Table S3:
 Selected bond distances (Å) and angles (°) for IM-17 in space group *Cmmm*.

Diffractometer	Tecnai F30 S-TWIN TEM
λ (Å)	0 01970
Temperature (\mathbf{K})	295(2)
Tilt range (°)	-60/+60
h k l	$-10 \le h \le 10$ $-20 \le k \le 20$ $-35 \le 1 \le 35$
Measured independent reflections	1866
Completeness (%)	77
Resolution (Å)	1 10
R = (%)	19 99
Overall $U(iso)$ (Å ²)	0.02405
Structure solution method	Direct methods by SIR2011 ²
R(%)	27 19
Structure refinement method	least-squares refinement on F^2
Independent reflections	1343
Independent reflections (> 4σ)	1121
Refined parameters	35
Constraints / restraints	2/21
R indices $(Fo^2 > 2\sigma (Fo)^2)$	$R_1 = 0.276, wR_2 = 0.649$
R indices (all data)	$R_1 = 0.290, wR_2 = 0.642$
GoF	2.192
	$w^{-1} = \sigma^2 F_0^2 + (0.2000P)^2$ with $P = (F_0^2 + 1)^2 F_0^2 + 1$
Weighting scheme	$2F_{c}^{2}/3$
Max. / min. residual electron density (e Å-3)	0.588 / -0.516

Table S4: Details on data collection and structure solution for IM-17 from ADT in *Cm2m*setting of space group *Amm2*.

² M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, C. Giacovazzo, M. Mallamo, A. Mazzone, G. Polidori and R. Spagna, *J. Appl. Crystallogr.*, 2012, 45, 357-361.

Table S5: The Shelx file produced by Sir2011 for IM-17 from ADT, *Cm2m* setting of spacegroup *Amm2*. The Si17 and Si18 sites correspond to Si13 and Si14 in Table S2.

REM	SI16 2	0.26192	0.48198	0.37997	1.00000	0.13623
REM Shelx file produced by Sir2011 on Fri Nov 29 2013 at	01 1	0.28481	0.65352	0.33050	1.00000	0.14774
16:42:07	O2 1	0.20504	0.47177	0.31349	1.00000	0.04491
REM Structure name: IM-17	O3 1	0.40468	0.72981	0.36862	1.00000	0.13569
REM	O4 1	0.40289	0.41214	0.39886	1.00000	0.22575
TITL IM17	O5 1	0.06542	0.18427	0.11670	1.00000	0.16679
CELL 0.01970 22.1420 38.8050 12.6710 90.0000 90.0000	O6 1	0.26220	0.19251	0.33767	1.00000	0.13743
90.0000	O7 1	0.38228	0.08523	0.20513	1.00000	0.25409
ZERR 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	O8 1	0.30351	0.46273	0.32898	1.00000	0.08897
LATT -7	O9 1	0.39860	0.63905	0.40623	1.00000	0.16286
SYMM -X,Y,-Z	O10 1	0.37497	0.30614	0.39932	1.00000	0.18242
SYMM -X,Y,Z	Si17 2	0.12178	0.30687	0.34872	1.00000	0.12218
SYMM X,Y,-Z	011 1	0.29675	0.33836	0.26228	1.00000	0.14885
REM Electron scattering factors	012 1	0.43439	0.05393	0.09766	1.00000	0.40939
REM SFAC Species $a(1) b(1) a(2) b(2) a(3) b(3) =$	013 1	0.43893	0.37093	0.11900	1.00000	0.25431
REM a(4) b(4) c f' f' mu cov radius weight	014 1	0.30262	0.26388	0.28422	1.00000	0.20423
SFAC O 0.45480 23.78030 0.91730 7.62200 0.47190	015 1	0.22288	0.57935	0.36996	1.00000	0.21834
2.14400 =	SI18 2	0.06519	0.40378	0.40136	1.00000	0.07418
0.13840 0.29590 0.00000 0.000 0.000 0.000 0.730	016 1	0.28366	0.40855	0.36756	1.00000	0.09974
15,999	017 1	0.27100	0.52700	0.32700	1.00000	0.00000
SFAC SI 2.12930 57.77480 2.53330 16.47560 0.83490	SI19 2	0.43700	0.09800	0.10700	1.00000	0.00000
2.87960 =	SI20_2	0.42866	0.72375	0.50000	0.50000	0.03770
0.32160 0.38600 0.00000 0.000 0.000 1.110	SI21 2	0 43244	0 40518	0 50000	0 50000	0.05789
28.086	SI22 2	0.43111	0.32124	0.50000	0.50000	0.09135
UNIT 352 176	SI23 2	0.43107	0.64750	0 50000	0.50000	0.09233
L S 30	SI24 2	0.07508	0.50219	0 50000	0.50000	0.12004
FMAP -2	SI25 2	0.07087	0.58952	0.50000	0.50000	0.08330
PLAN 25	018 1	0.26212	0.46370	0.50000	0.50000	0.19610
MERG	019 1	0.13328	0.31323	0.50000	0.50000	0.19610
BOND	020 1	0.05322	0 54274	0.50000	0.50000	0.14317
SHEL 99.1.1	021 1	0.42300	0.37100	0.50000	0.50000	0.00000
WGHT 0 100000	021 1 022 1	0.44566	0 72841	0.00000	0.50000	0.26490
FVAR 0.21039	023 1	0 42477	0.41646	0.00000	0.50000	0.26930
SII 2 0.26763 0.56509 0.37949 1.00000 0.03822	024 1	0.42300	0.09600	0.00000	0.50000	0.00000
SI2 2 0.34651 0.30418 0.29619 1.00000 0.11789	025 1	0.50000	0.41338	0.50000	0.25000	0.19610
SI2 2 0.34777 0.42928 0.30733 1.00000 0.12333	026 1	0.50000	0.73225	0.50000	0.25000	-0.02822
SI3 2 0.54777 0.42520 0.50755 1.00000 0.12555 SI4 2 0.26493 0.24540 0.41569 1.00000 0.14845	027 1	0.50000	0.30700	0.50000	0.25000	0.00000
SI5 2 0.13257 0.47124 0.32575 1.00000 0.05566	028 1	0.50000	0.66641	0.09660	0.50000	0.01688
SI6 2 0.43135 0.72418 0.14280 1.00000 0.05500	020 1	0.50000	0.34689	0.12945	0.50000	0.25991
SI7 2 0.15658 0.13215 0.30614 1.00000 0.12282	030 1	0.00000	0.49500	0.15200	0.50000	0.00000
SI8 2 0.35632 0.10373 0.32141 1.00000 0.12202	031 1	0.00000	0.49500	0.10200	0.25000	0.04522
SIG 2 0.55652 0.10575 0.52141 1.00000 0.14500	032 1	0.00000	0.49327	0.50000	0.25000	0.03906
SI10 2 0.24073 0.65816 0.42598 1.00000 0.17404	HKIF4	0.00000	0.47527	0.50000	0.23000	0.05700
SI10 2 0.24075 0.05010 0.42590 1.00000 0.15512 SI11 2 0.42815 0.64579 0.08989 1.00000 0.20335	FND					
SI12 2 0.27014 0.36285 0.42085 1.00000 0.20055						
SI13 2 0.43485 0.32303 0.10524 1.00000 0.15500						
SI14 2 0.06380 0.49518 0.07055 1.00000 0.27019						
SI15 2 0.42140 0.40201 0.16708 1.00000 0.25447						
$5113 \pm 0.42147 = 0.40271 = 0.1070 = 1.00000 = 0.17070$						

Atom	Wyck.	Site	S.O.F.	x/a	y/b	z/c	U [Ų]
SI1	4d	m		0	0.4292(5)	0.8624(9)	0.0711(7)
SI2	4d	m		0	0.4300(5)	0.9444(9)	0.0711(7)
SI3	8f	1		0.1887(11)	0.3470(6)	0.8396(6)	0.0711(7)
SI4	8f	1	0.762	0.191(1)	0.3520(5)	0.9672(6)	0.0711(7)
SI5	8f	1	0.44	0.3695(10)	0.4305(5)	0.86112	0.0711(7)
SI6	8f 0f	1	0.929	0.1262(8)	0.2/05(6)	0.9045(7)	0.0/11(/)
517	õi Qf	1	0 1 1	0.1232(9) 0.3764(12)	0.2010(7)	0.7852(6)	0.0711(7)
510	8f	1	0.11	0.3704(12) 0.1258(8)	0.4290(4) 0.2686(7)	1 0268(6)	0.0711(7)
SI10	8f	1	0.775	0.1220(8)	0.1378(7)	0.9298(6)	0.0711(7)
SI11	8f	1		0.1965(9)	0.1328(6)	0.8027(7)	0.0711(7)
SI12	8f	1	0.927	0.1211(9)	0.2547(8)	0.7040(6)	0.0711(7)
SI13	8f	1		0.1936(10)	0.1387(6)	1.0048(6)	0.0711(7)
SI14	8f	1		0.1257(8)	0.2626(8)	1.1047(7)	0.0711(7)
SI15	8f	1		0.1212(10)	0.0712(5)	0.8660(6)	0.0711(7)
SI16	8f	1	0.69	0.3801(12)	0.0714(6)	0.7644(6)	0.0711(7)
SI17	4d	m	0 701	0	0.0691(7)	0.7662(8)	0.0711(7)
SI18 SI10	81 94	1	0.791	0.1899(10) 0.1849(11)	0.1505(6)	0.6623(7)	0.0/11(7)
5119	0I Qf	1	03	0.1040(11) 0.3716(11)	0.3400(0)	0.0479(7) 1 0442(6)	0.0711(7)
SI20	01 4d	m	0.5	0.3710(11)	0.0723(3)	1.0442(0) 1.0404(8)	0.0711(7)
SI22	AG 8f	1	0.336	0.3741(10)	0.0714(6)	0.6829(6)	0.0711(7)
SI23	4d	- m	0.000	0	0.0688(8)	0.6838(8)	0.0711(7)
SI25	4d	m		0	0.4288(7)	0.6228(8)	0.0711(7)
01	2a	mm2		0	1/2	0.8540(14)	0.0604(20)
02	4d	m		0	0.4192(19)	0.9034(9)	0.0604(20)
03	8f	1		0.1027(7)	0.3985(7)	0.8461(10)	0.0604(20)
04	2a	mm2		0	1/2	0.9520(15)	0.0604(20)
05	8f	1		0.1026(7)	0.4010(7)	0.9613(9)	0.0604(20)
05	8T Of	1		0.3034(13) 0.1776(26)	0.3771(9)	0.8399(6)	0.0604(20)
07	0I Qf	1		0.1770(20)	0.2945(10)	0.0000(0)	0.0604(20)
00	8f	1		0.1030(23) 0.3036(12)	0.3202(9) 0.3836(10)	0.0024(7) 0.9673(5)	0.0004(20)
010	8f	1		0.1821(25)	0.3038(11)	0.9366(8)	0.0604(20)
011	8f	1		0.1715(22)	0.3216(10)	1.0038(8)	0.0604(20)
012	4e	m		1/2	0.4157(24)	0.8581(8)	0.0604(20)
013	8f	1		0.3325(18)	0.4284(11)	0.90241(28)	0.0604(20)
014	4c	.m.		0.345(5)	1/2	0.8444(6)	0.0604(20)
015	8f	1		0.1466(27)	0.1998(7)	0.9095(8)	0.0604(20)
016	4d	m		0	0.2831(17)	0.9047(13)	0.0604(20)
017	4d	m		0	0.2564(19)	0./94/(12)	0.0604(20)
018	81 04	1		0.1853(19) 0.1272(22)	0.2045(7)	0.8001(8)	0.0604(20)
019	01 4c	ı m		0.1372(32) 0.373(5)	0.2005(11)	0.7443(0)	0.0604(20)
020	4e	 m		1/2	0.4035(20)	0.9433(9)	0.0604(20)
022	4d	m		0	0.2657(19)	1.0227(12)	0.0604(20)
023	8f	1		0.1771(21)	0.2076(7)	1.0142(8)	0.0604(20)
024	8f	1		0.1557(31)	0.2790(11)	1.0660(7)	0.0604(20)
025	8f	1		0.1513(22)	0.0835(9)	0.9051(7)	0.0604(20)
026	4d	m		0	0.1340(18)	0.9394(10)	0.0604(20)
027	8f	1		0.1889(18)	0.1314(11)	0.9642(7)	0.0604(20)
028	8f	1		0.3070(12)	0.1123(11)	0.7877(8)	0.0604(20)
029	8t	1		0.1035(7)	0.1016(7)	0.7812(9)	0.0604(20)
030	ŏ۲ 4d	1 m		0.1ATR(18)	0.1129(10)	0.8419(/)	0.0604(20)
032	4u Sf	111		U 0 1032/17\	0.2392(1/)	0.0904(12) 0.6026(9)	0.0004(20)
032	8f	⊥ 1		0.1932(17)	0.1331(3)	0.0920(0)	0.0004(20)
034	8f	1 1		0.3056(13)	0.1175(10)	1.0180(7)	0.0604(20)
035	8f	- 1		0.1029(7)	0.1007(9)	1.0233(8)	0.0604(20)
036	4d	m		0	0.2543(18)	1.1082(13)	0.0604(20)
037	8f	1		0.1862(20)	0.2022(9)	1.1173(8)	0.0604(20)
038	8f	1		0.1621(22)	0.3169(10)	1.1277(8)	0.0604(20)

 Table S6:
 Atomic parameters of IM-17 after the final Rietveld refinment in space group Amm2.

039	4c	.m.		0.140(4)	0	0.8580(9)	0.0604(20)
040	4d	m		0	0.0880(22)	0.8595(10)	0.0604(20)
041	8f	1		0.3564(35)	0.0862(20)	0.7248(6)	0.0604(20)
042	4e	m		1/2	0.0882(28)	0.7728(13)	0.0604(20)
043	4c	.m.		0.359(5)	0	0.7725(14)	0.0604(20)
044	4d	m		0	0.0724(29)	0.7250(8)	0.0604(20)
045	2a	mm2		0	0	0.7776(17)	0.0604(20)
046	8f	1		0.3013(13)	0.1176(9)	0.6588(7)	0.0604(20)
047	8f	1		0.1023(7)	0.1016(7)	0.6693(9)	0.0604(20)
048	8f	1		0.2968(13)	0.3791(10)	0.6525(7)	0.0604(20)
049	8f	1		0.1016(7)	0.3980(8)	0.6394(9)	0.0604(20)
050	4e	m		1/2	0.0891(26)	1.0408(12)	0.0604(20)
051	8f	1		0.3334(25)	0.0831(18)	1.0853(6)	0.0604(20)
052	4c	.m.		0.351(5)	0	1.0326(11)	0.0604(20)
053	2a	mm2		0	0	1.0326(19)	0.0604(20)
054	4d	m		0	0.0814(31)	1.0816(8)	0.0604(20)
055	4e	m		1/2	0.0813(23)	0.6726(13)	0.0604(20)
056	4c	.m.		0.339(4)	0	0.6748(14)	0.0604(20)
057	2a	mm2		0	0	0.6717(16)	0.0604(20)
058	4c	.m.		0.361(5)	1/2	0.6393(11)	0.0604(20)
059	4e	m		1/2	0.4020(21)	0.6312(11)	0.0604(20)
060	2a	mm2		0	1/2	0.6312(18)	0.0604(20)
GE4	8f	1	0.238	0.191(1)	0.3520(5)	0.9672(6)	0.0711(7)
GE5	8f	1	0.56	0.3695(10)	0.4305(5)	0.86112	0.0711(7)
GE6	8f	1	0.071	0.1262(8)	0.2705(6)	0.9045(7)	0.0711(7)
GE8	8f	1	0.89	0.3764(12)	0.4290(4)	0.94285(34)	0.0711(7)
GE9	8f	1	0.227	0.1258(8)	0.2686(7)	1.0268(6)	0.0711(7)
GE12	8f	1	0.073	0.1211(9)	0.2547(8)	0.7040(6)	0.0711(7)
GE16	8f	1	0.31	0.3801(12)	0.0714(6)	0.7644(6)	0.0711(7)
GE18	8f	1	0.209	0.1899(10)	0.1505(6)	0.6623(7)	0.0711(7)
GE20	8f	1	0.7	0.3716(11)	0.0723(5)	1.0442(6)	0.0711(7)
GE22	8f	1	0.664	0.3741(10)	0.0714(6)	0.6829(6)	0.0711(7)
GE24	8f	1		0.3717(10)	0.4244(5)	0.6273(6)	0.0711(7)
Ow1	4e	m	1.16	1/2	0.245(4)	0.2059(21)	0.1250
Ow2	4e	m	1.17	1/2	0.436(4)	0.0424(18)	0.1250
Ow3	2b	mm2	0.71	1/2	1/2	0.305(5)	0.1250
Ow4	2b	mm2	1.02	1/2	1/2	0.6974(35)	0.1250
Ow5	8f	1	0.8	0.157(7)	0 613(4)	0 7205(18)	0 1250

SI1	03	1.60(2)	03	1.60(2)	108 8(5)	SI13	034	1.58(2)	023	1 59(2)	109 3(13)
511	03	1.60(2)	01	1.00(2) 1.61(2)	109.6(5)	5115	034	1.58(2)	027	1.00(2)	109.1(16)
	03	1.60(2)	01	1.01(2) 1.62(5)	109.6(10)		034	1.58(2)	035	1.00(-7) 1.60(2)	109.1(10)
	03	1.60(2)	01	1.02(3) 1.61(2)	109.6(10)		023	1.50(2) 1.50(2)	027	1.00(2) 1.60(4)	109.9(16)
	03	1.00(2) 1.60(2)	$\frac{01}{02}$	1.01(2) 1.62(5)	109.6(10)		023	1.59(2) 1.59(2)	035	1.00(4) 1.60(2)	108.9(10) 108.0(13)
	01	1.60(2)	$\frac{02}{02}$	1.02(5) 1.62(5)	109.0(10) 109.7(17)		023	1.57(2) 1.60(4)	035	1.00(2) 1.60(2)	100.0(13)
\$12	04	1.01(2) 1.58(2)	02	1.02(3) 1.50(2)	109.7(17)	SI14	038	1.00(4) 1.57(3)	033	1.00(2) 1.60(4)	1072(21)
512	04	1.58(2) 1.58(2)	05	1.59(2) 1.50(2)	108.6(5)	5114	038	1.57(3) 1.57(3)	024	1.00(4) 1.61(1)	107.2(21) 100.2(12)
	04	1.58(2)	03	1.59(2) 1.62(5)	108.0(5) 100.2(17)		038	1.57(3) 1.57(2)	030	1.01(1) 1.62(2)	109.2(12) 108.8(15)
	04	1.38(2) 1.50(2)	02	1.02(3) 1.50(2)	109.3(17) 100.3(5)		038	1.57(5) 1.60(4)	037	1.02(3) 1.61(1)	100.0(15)
	05	1.59(2) 1.50(2)	03	1.59(2) 1.62(5)	109.5(5)		024	1.00(4) 1.60(4)	030	1.01(1) 1.62(2)	110.0(13) 111.2(18)
	05	1.59(2) 1.50(2)	02	1.02(5) 1.62(5)	110.5(9)		024	1.00(4) 1.61(1)	037	1.02(3) 1.62(3)	111.2(10) 110.2(11)
S12	05	1.59(2) 1.50(3)	02	1.02(3) 1.60(2)	10.5(9)	\$115	030	1.01(1) 1.60(2)	037	1.02(3) 1.60(4)	110.3(11) 100.2(18)
515	08	1.59(3) 1.59(3)	00	1.00(2) 1.60(2)	107.3(15)	5115	030	1.00(3) 1.60(3)	023	1.00(4) 1.60(2)	109.3(18) 108.0(11)
	08	1.59(3)	07	1.00(2) 1.63(3)	110 7(19)		030	1.00(3) 1.60(3)	039	1.63(2)	111 6(10)
	06	1.59(3) 1.60(2)	03	1.05(3) 1.60(2)	108 6(10)		025	1.00(3) 1.60(4)	040	1.00(2) 1.60(2)	109.9(13)
	06	1.60(2)	07	1.63(3)	111 8(15)		025	1.60(4)	039	1.63(2)	108.3(11)
	03	1.60(2)	07	1.63(3)	110.0(13)		040	1.60(2)	039	1.63(2)	109.6(7)
SI4 GE4	05	1.58(2)	09	1.59(2)	109.5(10)	SI16 GE16	028	1.59(3)	042	1.60(2)	107.7(10)
211011	05	1.58(2)	011	1.60(4)	108.2(15)	~	028	1.59(3)	041	1.61(3)	109.0(20)
	05	1.58(2)	O10	1.61(3)	107.5(13)		O28	1.59(3)	O43	1.64(2)	110.4(12)
	09	1.59(2)	011	1.60(4)	108.8(14)		O42	1.60(2)	O41	1.61(3)	109.1(17)
	09	1.59(2)	O10	1.61(3)	111.0(15)		O42	1.60(2)	O43	1.64(2)	110.0(8)
	011	1.60(4)	O10	1.61(3)	111.8(20)		O41	1.61(3)	O43	1.64(2)	110.6(16)
GE5 SI5	06	1.67(2)	013	1.68(1)	108.4(9)	SI17	O45	1.60(3)	O29	1.61(2)	109.3(5)
	06	1.67(2)	012	1.69(2)	108.5(6)		O45	1.60(3)	O29	1.61(2)	109.3(5)
	06	1.67(2)	014	1.71(2)	111.2(7)		O45	1.60(3)	O44	1.61(4)	108.8(21)
	O13	1.68(1)	012	1.69(2)	109.6(7)		O29	1.61(2)	O29	1.61(2)	109.4(5)
	O13	1.68(1)	O14	1.71(2)	110.0(5)		O29	1.61(2)	O44	1.61(4)	110.1(9)
	012	1.69(2)	O14	1.71(2)	109.13(8)		O29	1.61(2)	O44	1.61(4)	110.1(9)
SI6 GE6	O15	1.60(2)	O10	1.62(4)	106.4(14)	SI18 GE18	O38	1.57(4)	O47	1.58(2)	108.0(15)
	O15	1.60(2)	O16	1.62(1)	109.1(11)		O38	1.57(4)	O46	1.60(2)	109.6(15)
	O15	1.60(2)	07	1.64(4)	111.1(14)		O38	1.57(4)	O32	1.60(3)	109.3(21)
	O10	1.62(4)	O16	1.62(1)	110.4(13)		O47	1.58(2)	O46	1.60(2)	108.8(10)
	O10	1.62(4)	07	1.64(4)	109.9(21)		O47	1.58(2)	O32	1.60(3)	110.8(13)
	O16	1.62(1)	07	1.64(4)	109.9(13)		O46	1.60(2)	O32	1.60(4)	110.4(14)
SI7	08	1.58(3)	018	1.60(3)	108.3(13)	SI19	O49	1.59(2)	O33	1.60(4)	110.0(16)
	08	1.58(3)	017	1.61(2)	108.9(12)		O49	1.59(2)	O48	1.60(2)	107.0(11)
	08	1.58(3)	019	1.61(3)	109.0(18)		049	1.59(2)	037	1.62(3)	109.6(13)
	018	1.60(3)	017	1.61(2)	109.7(11)		033	1.60(4)	048	1.60(2)	109.4(15)
	018	1.60(3)	019	1.61(3)	111.1(17)		033	1.60(4)	037	1.62(3)	108.9(21)
CENICIA	017	1.61(2)	019	1.61(3)	109.9(15)	GEANGIA	048	1.60(2)	037	1.62(3)	112.0(16)
GE8 SI8	021	1.67(2)	09	1.67(2)	108.0(10)	GE20 SI20	034	1.66(3)	050	1.68(2)	107.8(10)
	021	1.6/(2)	013	1.6/(2)	108.6(10)		034	1.66(3)	052	1.69(2)	109.4(10)
	021	1.6/(2)	020	1.70(1)	109.6(6)		034	1.66(3)	051	1.69(3)	110.8(1/
	09	1.6/(2)	013	1.0/(2)	110.6(11)		050	1.68(2)	052	1.69(2)	109.9(7) 108.7(14)
	09	1.0/(2)	020	1.70(1)	109.7(9)		050	1.09(2)	051	1.09(3)	108.7(14)
SIOCEO	013	1.0/(2) 1.59(2)	020	1.70(1) 1.50(2)	110.5(8)	G121	052	1.09(2)	031	1.09(3)	110.2(14)
519 GE9	023	1.38(3) 1.58(3)	011	1.39(3) 1.50(4)	108.0(14) 100.0(17)	5121	053	1.01(2) 1.61(2)	035	1.01(2) 1.61(2)	108.9(6)
	023	1.58(3) 1.58(3)	024	1.59(4) 1.60(1)	109.0(17) 110.1(11)		053	1.01(2) 1.61(2)	054	1.01(2) 1.63(4)	108.9(0) 109.1(22)
	011	1.50(3) 1.59(3)	024	1.00(1) 1.59(4)	110.1(11) 110.4(19)		035	1.01(2) 1.61(2)	035	1.03(4) 1.61(2)	108.5(5)
	011	1.59(3) 1.59(3)	027	1.50(4) 1.60(1)	109.6(12)		035	1.01(2) 1.61(2)	054	1.61(2) 1.63(4)	110.5(9)
	024	1.59(3) 1.59(4)	022	1.60(1)	109.8(15)		035	1.61(2)	054	1.63(4)	110.7(9)
SI10	025	1.59(1) 1.59(3)	022	1 59(3)	108 7(18)	GE22 SI22	055	1.61(2)	046	1.03(1) 1.67(3)	108.2(9)
~~~~	025	1.59(3)	026	1.60(1)	109.1(12)	0	055	1.66(2)	056	1.68(2)	109.5(7)
	025	1.59(3)	015	1.62(3)	107.7(13)		055	1.66(2)	O41	1.68(3)	109.7(15)
	027	1.59(3)	O26	1.60(1)	108.2(10)		O46	1.67(3)	O56	1.68(2)	109.2(10)
	027	1.59(3)	015	1.62(3)	112.8(17)		O46	1.67(3)	O41	1.68(3)	110.7(18)
	O26	1.60(1)	015	1.62(3)	110.2(13)		056	1.68(2)	O41	1.68(3)	109.4(15)
SI11	O28	1.59(2)	O30	1.59(4)	107.9(17)	SI23	O47	1.59(2)	O47	1.59(2)	109.1(5)
	O28	1.59(2)	O18	1.60(2)	109.9(13)		O47	1.59(2)	O57	1.60(3)	109.4(5)
	O28	1.59(2)	O29	1.61(3)	109.4(9)		O47	1.59(2)	O44	1.61(4)	109.4(9)
	O30	1.59(4)	O18	1.60(2)	109.5(15)		O47	1.59(2)	O57	1.60(3)	109.4(5)
	O30	1.59(4)	O29	1.61(3)	110.8(18)		O47	1.59(2)	O44	1.61(4)	109.4(9)
	018	1.60(2)	O29	1.61(3)	109.3(12)		O57	1.60(3)	O44	1.61(4)	110.0(21)
SI12 GE12	O32	1.60(3)	O31	1.60(2)	109.3(10)	GE24	O48	1.70(3)	O59	1.71(2)	108.0(9)
	032	1.60(3)	033	1.61(3)	110.0(15)		048	1.70(3)	051	1.72(3)	109.7(17)
	032	1.60(3)	019	1.61(3)	109.0(18)		048	1.70(3)	058	1.75(2)	111.7(10)
	031	1.60(2)	033	1.61(3)	108.9(13)		059	1.71(2)	051	1.72(3)	109.0(13)
	031	1.60(2)	019	1.61(3)	109.8(15)		059	1.71(2)	058	1.75(2)	109.3(6)
	033	1.61(3)	019	1.61(3)	109.8(19)		051	1.72(3)	058	1.75(2)	109.1(14)

SI25	O49 1.60(2) O49 1.60(2)	O49 1.60(2) O60 1.62(2)	107.6(5) 109.7(6)	O49 O60	1.60(2) 1.62(2)	O54 O54	1.63(5) 1.63(5)	110.0(9) 109.7(21)
	O49 1.60(2)	O54 1.63(4)	110.0(9)					
	O49 1.60(2)	O60 1.62(2)	109.7(6)					
Ow3	O43 2.19(12)							
	O43 2.19(12)							
	O42 2.33(12)							
	O42 2.33(12)							
Ow4	O58 2.87(12)							
	O58 2.87(12)							
Ow5	O33 2.19(85)							
	019 2.84(90)							

 Table S8: Coordination sequences and vertex symbols calculated for the framework topology of IM-17.³

T-atom site							$N_1$ to	) N ₁₂					Vertex symbol
T ₁	4	11	20	29	47	77	103	123	156	211	261	298	4•5 ₂ •5•6•5•6
$T_2$	4	11	20	29	47	79	105	125	160	210	261	304	4 <b>.</b> 5 ₂ <b>.</b> 5 <b>.</b> 6 <b>.</b> 5 <b>.</b> 6
T ₃	4	12	19	33	52	76	105	134	169	208	252	307	5•5•5 ₂ •10•6•6
$T_4$	4	12	18	31	50	75	104	137	167	203	253	308	5 <b>·</b> 5 <b>·</b> 5 <b>·</b> 6 <b>·</b> 5 ₂ <b>·</b> 10
T ₅	4	9	18	33	54	79	104	132	167	206	253	306	4.5.4.6.4.10
$T_6$	4	11	18	30	47	71	103	136	171	205	249	307	4 <b>.</b> 5 ₂ <b>.</b> 5 <b>.</b> 5 <b>.</b> 5 <b>.</b> 6
$T_7$	4	11	22	34	51	75	105	142	174	208	256	311	<b>4.6.5.6</b> ₂ <b>.5.</b> 12 ₇
$T_8$	4	9	18	33	54	80	106	132	165	208	260	313	4.5.4.6.4.10
T9	4	11	21	33	52	75	105	140	174	209	255	313	<b>4.5.5.6</b> ₂ <b>.5.</b> 12 ₇
T ₁₀	4	10	21	34	48	68	101	139	178	213	251	314	4 <b>·</b> 5 <b>·</b> 4 <b>·</b> 8 ₂ <b>·</b> 5 <b>·</b> 6
T ₁₁	4	12	20	33	52	74	100	136	175	216	263	312	5 <b>·</b> 6 <b>·</b> 5 <b>·</b> 6 <b>·</b> 6 <b>·</b> 6 ₂
T ₁₂	4	10	20	35	52	73	106	142	173	204	253	313	<b>4.4.5.6</b> ₂ <b>.5.</b> 12 ₇
T ₁₃	4	12	20	33	52	74	100	135	174	216	262	310	5 <b>·</b> 6 <b>·</b> 5 <b>·</b> 6 ₂ <b>·</b> 5 <b>·</b> 8
T ₁₄	4	10	20	34	51	74	103	140	176	208	257	310	<b>4.4.5.6</b> ₂ <b>.5.</b> 12 ₇
T ₁₅	4	10	20	33	47	68	100	137	174	217	262	309	<b>4.6.4.6</b> ₂ <b>.5.</b> 8 ₂
T ₁₆	4	9	18	32	51	76	105	136	169	210	264	316	<b>4.6</b> ₂ <b>.4.6</b> ₂ <b>.4.</b> 10
T ₁₇	4	11	20	27	45	77	105	123	157	216	269	308	$4 \cdot 5_2 \cdot 6_2 \cdot 6_2 \cdot 6_2 \cdot 6_2$
T ₁₈	4	11	18	33	53	73	102	135	171	210	253	308	<b>4.6</b> ₂ <b>.5.6.5.</b> 10 ₂
T ₁₉	4	11	18	33	54	77	102	136	171	210	254	309	<b>4.6</b> ₂ <b>.5.6.5.</b> 10 ₂
T ₂₀	4	9	19	35	53	74	103	138	171	209	266	321	4 <b>·</b> 6 <b>·</b> 4 <b>·</b> 6 ₂ <b>·</b> 4 <b>·</b> 10
T ₂₁	4	11	22	29	43	77	109	125	155	214	270	311	<b>4.5</b> ₂ <b>.6.6</b> ₂ <b>.6.6</b> ₂
T ₂₂	4	9	18	32	51	77	107	137	169	209	258	309	<b>4.6.4.6</b> ₂ <b>.4.</b> 10 ₄
T ₂₃	4	11	20	27	45	79	105	125	159	211	261	301	<b>4.5</b> ₂ <b>.6.6</b> ₂ <b>.6.6</b> ₂
T ₂₄	4	11	20	29	47	79	107	127	159	208	258	304	<b>4.5</b> ₂ <b>.6.6</b> ₂ <b>.6.6</b> ₂
T ₂₅	4	9	18	33	54	80	108	136	167	209	259	309	<b>4.6.4.6</b> ₂ <b>.4.</b> 10 ₄

³ M. M. J. Treacy, M. D. Foster and K. H. Randall, *Microporous Mesoporous Mater.*, 2006, 87, 255-260.



0.3 0.2 0.0 -0.2 -0.3

**Figure S2:** ¹H liquid NMR spectrum of IM-17 dissolved in HF and D₂O showing the integrity of the OSDA inside the channels.



**Figure S3:** Projection of IM-17 solved in space group *Cmmm* from PXRD along the *c*-axis showing the disorder on the Si13 and Si14 T sites. Oxygen atoms have been removed for clarity.



At this stage, in order to remove the disorder (sites Si13 and Si14), it is possible to lower the symmetry as follow. A super cell is made in space group P1 and 50% of the Si13 and Si14 are removed in different manners as shown on Figure S4 and the occupancy factors of the remaining ones are changed to 1.

**Figure S4:** The four possibilities to remove disorder in IM-17. Note that the schemes C and D can be eliminated because the ²⁹Si solid state NMR spectrum on the calcined sample shows that no Q3 species are present as it should be the case for interrupted frameworks (on C and D, the red atoms are the OH groups).





Figure S5: Projection along the *b*-axis of IM-17 in space group *Pmma*.

Figure S6: Projection along the *a*-axis of IM-17 in space group *Amm2*.



⁴ Cerius², Molecular Simulations Inc., San Diego, April 2000 version 4.2 MatSci, 2000.

- 200 nm
- Figure S7: STEM image of a typical crystal of IM-17 used for ADT acquisition. Data were acquired from the right-bottom corner of the crystal.

**Figure S8:** Asymmetric unit of calcined IM-17 after Rietveld refinement in space group *Amm2*, the water molecules have been omitted for clarity.



**Figure S9:** Short contacts between water molecules and the framework oxygen atoms in calcined IM-17 (space group *Amm2*).





