Fluorescein-based ionic liquid sensor for label-free detection of serum albumins

Supporting Information

Indika Galpothdeniya,¹ Bishnu P. Regmi,¹ Susmita Das,¹ Sergio L. De Rooy,¹ Suzana Hamdan,¹ and Isiah M. Warner^{*1}

¹Department of Chemistry, Louisiana State University, Baton Rouge, LA70803, USA

* Corresponding author: Isiah M. Warner, email: iwarner@lsu.edu, Phone: 1-225-578-2829, Fax: 1-225-578-3458

Fig. S1. Fluorescence emission spectra (λ_{ex} = 490 nm) of 40 µM [P₆₆₆₁₄]₂[FL] nanodroplets in the presence of same concentration (1.5 µM) of different albumins and non-albumins

Fig. S2. Fluorescence emission spectra (λ_{ex} = 490 nm) of 40 µM (A) Na₂FL, (B) [TPP]₂[FL] and (C) [4NB]₂[FL] with eight different proteins at the concentration of 1.5 µM

d

Fig. S3. Fluorescence emission spectra (λ_{ex} = 490 nm) of (a) Eosin B, (b) Eosin Y, (c) Phloxine B (d) Erythrosin B and, (e) Rose Bengal nanoparticles dispersed in different concentrations of BSA

Fig S4. Relationship between relative fluorescence intensity at 512 nm and HSA concentration in human serum. Human serum samples were diluted for 1000 times before analysis. (concentration of $[P_{66614}]_2[FL]$ - 24 µM)

Fig. S5. The fluorescence emission spectra (λ_{ex} = 490 nm) of 24 µM dispersions of [P₆₆₆₁₄]₂[FL] at 0 and 120 minutes

[P ₆₆₆₁₄] ₂ [FL] Concentration(µM)	A _{ag(530)} /A _{m(490)} ratio
40	1.9
32	1.9
24	1.9
16	1.6
08	1.1

Table S1. Aggregate to monomer peak ratio $A_{ag(530)}/A_{m(490)}$ derived from absorbance spectra

 A_{ag} – Absorbance of the aggregate peak, A_m – Absorbance of the monomer peak