## Biodegradable multiblock polyurethane micelles with tunable reduction-sensitivity for on-demand intracellular drug delivery

Xueling He,<sup>*‡a*</sup> Mingming Ding, <sup>*‡b*</sup> Jiehua Li, <sup>*b*</sup> Hong Tan, <sup>*\*b*</sup> Qiang Fu<sup>*b*</sup> and Liang Li<sup>*\*a*</sup>

<sup>a</sup> Institute of Biomedical Engineering, West China School of Preclinical and Forensic Medicine, Sichuan University,

Chengdu, 610041, China

<sup>b</sup> College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University,

Chengdu 610065, China

## Supporting Information



**Fig. S1.** Synthesis of reduction-sensitive biodegradable multiblock polyurethanes, x, y, z, m = 1, 2,

3, ..., *w* represents PCL segment.



Fig. S2. GPC diagrams of reduction-sensitive biodegradable multiblock polyurethanes.



**Fig. S3.** FTIR spectra of reduction-sensitive biodegradable multiblock polyurethanes: (a) SS0, (b) SS30, (c) SS50, (d) SS70 and (e) SS100.



**Fig. S4.** DSC thermograms of reduction-sensitive biodegradable multiblock polyurethanes: (a) SS0, (b) SS30, (c) SS50, (d) SS70 and (e) SS100. A, B, C and D represent curves for first heating, first cooling, second heating procedures and glass transition regions in the second heating curves, respectively.

| Samples <sup>b</sup> | $T_{ m g}{}^c$ | $T_{cc}{}^{d}(^{\circ}\mathrm{C})$ | $T_{\rm ml}^{e}(^{\circ}{\rm C})$  | $T_{c2}{}^{f}(^{\circ}\mathrm{C})$ | $T_{\mathrm{m2}}^{e}(^{\circ}\mathrm{C})$ |
|----------------------|----------------|------------------------------------|------------------------------------|------------------------------------|-------------------------------------------|
|                      | (°C)           | $[\Delta H_c (\mathrm{J g}^{-1})]$ | $[\Delta H_m (\mathrm{J g}^{-1})]$ | $[\Delta H_c (\mathrm{J g}^{-1})]$ | $[\Delta H_m (\mathrm{J g}^{-1})]$        |
| SS0                  | -58.73         | —                                  | 53.6 [58.4]                        | -1.1 [26.1]                        | 42.8 [55.6]                               |
| SS30                 | -60.36         | -15.5 [13.4]                       | 54.8 [49.5]                        | - 6.8 [15.1]                       | 42.0 [53.4]                               |
| SS50                 | -60.25         | -6.7 [19.4]                        | 53.9 [45.0]                        | -8.3 [9.5]                         | 41.6 [38.3]                               |
| SS70                 | -58.17         | -0.1 [30.8]                        | 55.8 [51.0]                        | —                                  | 40.0 [35.7]                               |
| SS100                | -54.83         | _                                  | 53.1 [51.0]                        | -6.3 [30.2]                        | 41.1 [52.6]                               |

**Table S1.** Thermal properties of reduction-sensitive biodegradable multiblock polyurethanes.<sup>*a*</sup>

<sup>*a*</sup> Differential scanning calorimetry (DSC) was performed on a Perkin-Elmer Pyris Diamond DSC (Perkin-Elmer Instruments, USA) at a heating/cooling rate of 10 °C min<sup>-1</sup> in the range of -100 to 100 °C under a steady flow of nitrogen. <sup>*b*</sup> Reduction cleavable polyurethanes are denoted as SSX, where SS is for DHDS, X is the molar content of DHDS in chain extender. <sup>*c*</sup>  $T_g$  is defined as the midpoint of the glass transition. <sup>*d*</sup> Cold crystallization temperature. <sup>*e*</sup>  $T_{m1}$  and  $T_{m2}$  represent the melting temperatures on the first heating and second heating curves, respectively. <sup>*f*</sup> The crystallization temperature on the first cooling curve.