Electronic Supplementary Information

Inorganic-organic hybrid NiO-g-C₃N₄ photo-catalyst for efficient

methylene blue degradation under visible light irradiation

Hai-Yu Chen,^{a, b} Ling-Guang Qiu,^{a, *}Juan-Ding Xiao,^a Sheng Ye,^a Xia Jiang,^a Yu-Peng Yuan,^{a, b, *}

a Laboratory of Advanced Porous Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039, China. b Innovation Lab for Clean Energy & Green Catalysis, Anhui University, Hefei 230601, P. R. China

^{*} Corresponding author:

Fax: +86 551 65108212; Tel: +86 551 65108212;

E-mail: <u>yupengyuan@ahu.edu.cn</u> (Y. P. Yuan);

lgqiu@ahu.edu.cn (L. G. Qiu).

Supplementary Information

Fig. S1 The MB dye adsorption over $g-C_3N_4$ (a) and the hybrid catalysts $1\sim 6$ (b-g, respectively) for various time. (h) The magnified image of (a).

Fig. S2 TEM image of the NiO-g- C_3N_4 hybrid catalyst.

Fig. S3 The distribution of pore diameter measured by Barrett-Joyner-Halenda (BJH) method.

Fig. S4 MB degradation over pristine $g-C_3N_4$, sample 3 (6.3 wt. % NiO), and the mixture of $g-C_3N_4$ and NiO (6.3 wt. %).