Self-Assembly of supramolecular triangles with neutral *trans*-PdCl₂ directing units

Amlan K. Pal, Baptiste Laramée-Milette and Garry. S. Hanan*

Département de Chimie, Université de Montréal, 2900 Edouard-Montpetit, Montréal, Québec H3T-1J4, Canada.

Supporting Information

Materials, methods and instrumentation

Nuclear magnetic resonance (NMR) spectra were recorded in CD₃CN at room temperatutre (r.t.) on a Bruker AV400 (400 MHz) spectrometer for ¹H NMR and at 100 and for ¹³C NMR. Chemical shifts are reported in part per million (ppm) relative to residual solvent protons (1.94 ppm for CD₃CN) and the carbon resonance (118.69 ppm for CD₃CN) of the solvent.

Absorption spectra were measured in deaerated acetonitrile at room temperature (r.t.) on a Cary 500i UV-Vis-NIR Spectrophotometer. For luminescence spectra a Cary Eclipse Fluorescence spectrofluorimeter was used. Accurate mass measurements were performed on a 6210 TOF mass spectrometer from Agilent technologies, coupled to a 1100 series LC system in positive electrospray mode. Appropriate $[M-PF_6]^{n+}$ species were used for empirical formula determination, and exact masses were calculated using Analyst® QS Software from Applied Biosystems. Electrochemical measurements were carried out in argon-purged purified acetonitrile at room temperature with a BAS CV50W multipurpose potentiostat. The working electrode was a glassy carbon electrode. The counter electrode was a Pt wire, and the pseudo-reference electrode was a silver wire. The reference was set using an internal 1 mM ferrocene/ferrocinium sample at 395 mV *vs.* SCE in acetonitrile. The concentration of the compounds was about 1 mM. Tetrabutylammonium hexafluorophosphate (TBAP) was used as supporting electrolyte and its concentration was 0.10 M. Cyclic voltammograms of **1-4** were obtained at scan rate of 50 mV/s. The criteria for reversibility were the separation of 60 mV between cathodic and anodic peaks, the close to unity ratio of the intensities of the cathodic and anodic currents, and the constancy of the peak potential on changing scan rate.

Experimental uncertainties are as follows: absorption maxima, ± 2 nm; molar absorption coefficient, 10%; redox potentials, ± 10 mV; emission maxima, ± 2 nm.

tert-Butylamine, pyridine, 3-picoline and nicotinic acid were purchased from VWR and used as received. 2-Acetylpyridine and pyridine-3-carboxaldehyde were purchased from Aldrich and used as received. Fe and Ru-metal salts were used as supplied from Aldrich. PdCl₂ was received from Pressure Chemicals and used as received. Pd(CH₃CN)₂Cl₂ was synthesized using literature procedure.¹ 4-(3-Pyridyl)-2,2':6',2''-terpyridine (3-pytpy) was synthesized using a literature procedure.² Fe- and Ru-metallo-ligands were synthesized according to reported literature procedure.³

Experimental:

(PdCl₂[µ-(3-pytpy)₂Fe])₃(PF₆)₆ (1):

A 100 mL round-bottomed flask was charged with Fe-metallo-ligand ([(3-pytpy)₂Fe] [(PF₆)₂]) (100 mg, 0.103 mmol) and to it $Pd(CH_3CN)_2Cl_2$ (28 mg, 0.109 mmol) was added, followed by the addition of nitromethane (50 mL). The resulting purple solution was heated at reflux for 2 days in the dark, after which time the solution was cooled down to r.t. and the solution was concentrated to ca. 6-8 mL. Precipitation as a purple solid of the desired metallo-triangle was induced by the addition of diethyl ether (~ 20 mL). The solid was isolated by filtration and was triturated with acetone (~ 3 mL) and dried under vacuum. Yield = 101 mg (85%). ¹H NMR: (400 MHz, CD₃CN) (see Scheme 1 in main text for numbering) δ ppm 9.59 (s, 2 H₂...), 9.20 (s, 4 H₃...), 9.01 (d, $J^d = 8$ Hz, 2 H₆...), 8.77 (d, $J^d = 8$ Hz, 2 H₄...), 8.61 (d, J^d = 8 Hz, 4 H₃), 7.94 (t, J^t = 8 Hz, 4 H₄), 7.88 (t, J^t = 8 Hz, 2 H₅...), 7.19 (d, J^d = 8 Hz, 4 H₆), 7.11 (t, $J^{t} = 8$ Hz, 4 H₅). ¹³C{¹H} NMR: (100 MHz, CD₃CN) δ ppm 162.47, 159.43, 155.79, 154.79, 153.68, 150.43, 140.62, 136.98, 136.49, 129.19, 127.84, 126.01, 123.65, HRMS (ESI), m/z: calculated for $C_{40}H_{28}N_8PF_6Fe: 821.14281;$ found: 821.14316 [(Fe-metallo-ligand)-PF₆)]⁺, calculated for $C_{40}H_{28}N_8Fe:$ 338.08931; found: 338.08955 [(Fe-metallo-ligand)-2PF₆)]²⁺, calculated for $C_{120}H_{84}N_{24}Fe_3Pd_3Cl_6P_3F_{18}$: 998.98427; found: 998.98427, calculated for C₁₂₀H₈₄N₂₄Fe₃Pd₃Cl₆P₂F₁₂: 712.99702; found: 712.99702, calculated for $C_{120}H_{84}N_{24}Fe_{3}Pd_{3}Cl_{6}P_{1}F_{6}$: 541.40467; found: 541.40458. Anal. Calc. for C₁₂₀H₈₄N₂₄Fe₃Pd₃Cl₆P₂F₁₂·C₃H₆O: C: 42.34; N: 9.63; H: 2.60. Found: C: 42.58; N: 9.35; H: 2.38 (presence of acetone molecule was also confirmed in the ¹H NMR spectrum of this compound).

(PdCl₂[µ-(3-pytpy)₂Ru])₃(PF₆)₆ (2):

A 100 mL round-bottomed flask was charged with Ru-metallo-ligand ([(3-pytpy)₂Ru] [(PF₆)₂]) (100 mg, 0.098 mmol) and to it Pd(CH₃CN)₂Cl₂ (27 mg, 0.103 mmol) was added, followed by the addition of nitromethane (50 mL). The resulting red solution was heated at reflux for 2 days in the dark, after which time the solution was cooled down to r.t. and the solution was concentrated to *ca*. 6-8 mL. Precipitation of the desired metallo-triangle was induced by addition of an aliquot of saturated aqueous KPF₆ solution (3 mL), followed by the addition of diethyl ether (~ 20 mL). The red solid was isolated by filteration and was triturated with acetone (~ 3 mL) and was dried under vacuum. Yield = 85 mg (72%). ¹H NMR: (400 MHz, CD₃CN) (see Scheme 1 for numbering) δ ppm 9.48 (s, 2 H₂...), 9.02 (s, 4 H₃...), 8.96 (d, *J^d* = 8 Hz, 2 H₆...), 8.66 (d, *J^d* = 8 Hz, 2 H₄...), 8.63 (d, *J^d* = 8 Hz, 4 H₃), 7.98 (t, *J^t* = 8 Hz, 4 H₄), 7.82 (t, *J^t* = 8 Hz, 2 H₅...), 7.43 (d, *J^d* = 8 Hz, 4 H₆), 7.21 (t, *J^t* = 8 Hz, 4 H₅). ¹³C{¹H}</sup> NMR: (100 MHz, CD₃CN) δ ppm 158.74, 158.69, 156.74, 156.68, 154.88, 153.52, 152.92, 139.59, 139.23, 128.62, 126.95, 125.77, 123.12. HRMS (ESI), m/z: calculated for C₄₀H₂₈N₈Ru: 361.07402; found: 361.07234 [(Ru-metallo-ligand)-

 $2PF_6$]²⁺, calculated for $C_{120}H_{84}N_{24}Ru_3Pd_3Cl_6P_3F_{18}$: 1042.95340; found: 1042.95428, calculated for $C_{120}H_{84}N_{24}Ru_3Pd_3Cl_6P_2F_{12}$: 745.97400; found: 745.97521, calculated for $C_{120}H_{84}N_{24}Ru_3Pd_3Cl_6P_1F_6$: 567.78637; found: 567.78785, calculated for $C_{120}H_{84}N_{24}Ru_3Pd_3Cl_6$: 448.99461; found: 448.99572. Anal. Calc. for $C_{120}H_{84}N_{24}Ru_3Pd_3Cl_6P_2F_{12}$ ·3KPF₆: C: 34.99; N: 8.16; H: 2.06. Found: C: 34.65; N: 7.99; H: 2.27.

Figure S1. Overlay of observed high-res LC-TOF MS of $[C_{120}H_{84}N_{24}Fe_3Pd_3Cl_3 (PF_6)]^{5+}$ (blue, outer trace) with simulated isotope pattern (red, inner trace).

Figure S2. High-res LC-TOF MS of complex 2 or C₁₂₀H₈₄N₂₄Ru₃Pd₃Cl₃ (PF₆)₆.

Figure S3. Overlay of observed high-res LC-TOF MS of $(2)^{6+}$ or $[C_{120}H_{84}N_{24}Ru_3Pd_3Cl_3]^{6+}$ (blue, outer trace) with simulated isotope pattern (red, inner trace).

Figure S4. Overlay of observed high-res LC-TOF MS of $(2)^{4+}$ or $[C_{120}H_{84}N_{24}Ru_3Pd_3Cl_3(PF_6)_2]^{4+}$ (blue, outer trace) with simulated isotope pattern (red, inner trace).

Figure S5. Overlay of observed high-res LC-TOF MS of $(2)^{5+}$ or $[C_{120}H_{84}N_{24}Ru_3Pd_3Cl_3(PF_6)]^{5+}$ (blue, outer trace) with simulated isotope pattern (red, inner trace).

Figure S6: Cyclic voltammograms of complex **1** (bold line) and Fe-metallo-ligand (dashed line). Inset shows the irreversible and quasi-reversible natures of individual reduction peaks of complex **1**.

DFT Calculations:

All calculations were performed with the Gaussian09⁴ employing the DFT method, the Becke threeparameter hybrid functional,⁵ and Lee-Yang-Parr's gradient-corrected correlation functional (B3LYP).⁶ Singlet ground state geometry optimizations for 1^{6+} and 2^{6+} in acetonitrile were carried out at the (R)B3LYP level in the gas phase, using their respective crystallographic structures as starting points. All elements except Fe, Ru and Pd were assigned the 6-31G(d,f) basis set.⁷ The double- ζ quality LANL2DZ ECP basis set⁸ with an effective core potential and one additional f-type polarization was employed for the Fe, Ru and Pd atoms. Vibrational frequency calculations were performed to ensure that the optimized geometries represent the local minima and there are only positive eigenvalues. Gaussview 5.0,⁹ Mercury 3.1,¹⁰ ORTEP3¹¹ and POV-Ray v3.62¹² were employed to draw the geometry optimized structures.

Figure S7: DFT optimized structures of $[1]^{6+}$ (top-left) and $[2]^{6+}$ (top-right). The bottom figure shows a tight-fit of a hollow-sphere of 4 Å radii in the DFT optimized structure of $[1]^{6+}$.

Center Number	Aton Nur	nic A nber	tomic Type	Coordinates X Y	s (Angstroms) Z	Center Number	Ato N
	6	0	-3 209163	9 329988		64	6
2	6	Ő	-5.591434	9.638321	-3.179791	65	6
3	7	0	-4.261790	8.545972	-1.517841	66	6
4	6	0	-3.304381	10.281773	-2.873119	67	6
5	6	0	-4.514486	10.438454	-3.541119	68	6
6	6	0	-5.420880	8.704083	-2.163924	69	7
0	6	0	-1.628298	6.669131	1.594991	70	6
0	6	0	-2.00/255	4.708319	5.205894 2.562168	71	6
10	7	0	-2 920247	6 287269	1 422009	72	6
11	6	ŏ	-3.419976	5.331961	2.214144	75	6
12	6	0	-1.342309	5.090262	3.378009	75	7
13	26	0	-3.863549	7.271729	-0.034820	76	6
14	7	0	-4.720748	8.503302	1.284227	77	6
15	6	0	-6.192585	10.047846	3.070579	78	6
16	6	0	-4.176576	9.573460	1.871383	79	6
17	6	0	-6.000492	8.170669	1.592331	80	6
18	6	0	-6.764675	8.930262	2.471240	81	6
19	6	0	-4.874558	10.370982	2.771891	82	6
20	7	0	-5.553285	6.437350	0.092314	83	6
21	6	0	-7.996635	5.188600	0.314608	84	6
22	6	0	-6.478935	6.955823	0.913667	85	1
23	6	0	-5./90480	5.555045	-0.632828	86	67
24 25	6	0	-7.015385	4.082403	-0.540//4	8/	6
25	7	0	-7.718501	5 785030	-1 3311/8	00 80	6
20	6	0	-3 474254	3 628754	-3 088402	90	6
28	6	0	-2 470932	5 540358	-2 054827	91	6
29	6	ŏ	-4.640449	4.961441	-1.471609	92	6
30	6	õ	-4.621094	3.874485	-2.338910	93	6
31	6	0	-2.382091	4.475989	-2.945941	94	7
32	6	0	-9.305087	4.515978	0.435446	95	6
33	6	0	-11.693756	3.171253	0.571560	96	6
34	6	0	-10.492598	5.236401	0.585509	97	6
35	6	0	-9.390972	3.126716	0.363542	98	6
36	7	0	-10.556605	2.480763	0.423365	99	6
37	6	0	-11.695714	4.554123	0.658866	100	6
38	7	0	7.418715	7.872866	0.030055	101	7
39	6	0	9.793466	6.450683	0.177392	102	6
40	6	0	8.593802	8.525015	0.103855	103	6
41	6	0	/.400298	6.528242	0.02/943	104	6
42	6	0	8.5/0094	5.//2969	0.113860	105	
45	6	0	9.801339	/.84208/	0.170240	100	6
44	7	0	8/31922	1 5/8330	0.124668	107	6
46	6	0	9 293345	3 562808	-0 785014	100	6
47	6	Ő	7 673096	3 616585	1 005694	110	6
48	6	õ	7.653434	2.225721	0.982485	111	6
49	6	0	9.233096	2.173618	-0.752283	112	7
50	6	0	6.841758	1.331353	1.822203	113	6
51	6	0	5.435838	-0.528466	3.270527	114	6
52	7	0	7.026899	0.011594	1.558682	115	6
53	6	0	5.953875	1.766866	2.801090	116	6
54	6	0	5.239463	0.821950	3.536979	117	6
55	6	0	6.337850	-0.890878	2.273564	118	6
56	6	0	9.987781	1.227590	-1.589443	119	6
57	6	0	11.344073	-0.722604	-2.959623	120	7
58	6	0	10.913989	1.602109	-2.55/865	121	6
59 60	1	0	9.722539	-0.0/6/53	-1.518/15	122	6
61	0	0	10.398383	-1.02200/	-1.903/01	123	0
62	26	0	8 35/17/0	-0 340285	0 110319	124	7
63	20	0	9 781746	-0.340203	1 441386	125	6
00	,		2.101140	0.112001		140	

Table S1. Optimized Atomic coordinates obtained from DFT for 1^{6+} in ground state $(b3lyp/LanL2DZ(f)[Fe,Pd]6-31G^{**}[C,H,N]).$

Center Number	Atomic Numbe	A	tomic Type	Coordinates X Y	(Angstroms) Z
64	6	0	11.708313	-1.616954	3.246993
65	6	0	10.556909	0.132066	2.088143
66	6	0	9.961845	-2.068976	1.669491
67	6	0	10.914911	-2.535673	2.567790
68	6	0	11.530336	-0.260958	3.000046
69	7	0	6.909207	-0.553792	-1.252904
70	6	0	4.928745	-1.178526	-3.105466
/1	6	0	6.5/0011	-1.846829	-1.49138/
72	6	0	6.272559 5 278068	0.410426	-1.923998
74	6	0	5 584924	-2 189/150	-2.858542
75	7	0	8 249142	-2.226573	0.087838
76	6	ŏ	8.104710	-4.972935	0.049553
77	6	Ő	9.075428	-2.933743	0.874587
78	6	0	7.347958	-2.820686	-0.709342
79	6	0	7.245997	-4.207401	-0.748131
80	6	0	9.033306	-4.323562	0.872666
81	6	0	8.050210	-6.448907	0.006993
82	6	0	7.846681	-9.195854	-0.121940
83	6	0	9.214595	-7.226903	-0.046900
84	6	0	6.819034	-7.108107	0.001513
85	7	0	6.727733	-8.448504	-0.056789
80	6	0	9.10/93/	-8.613630	-0.1191/6
8/	6	0	5.105581	-10.314/08	-0.032013
00 80	6	0	3.067064	-11.658010	-0.073033
90	6	0	1 961286	-9 613217	0.001239
91	6	Ő	0.709529	-10.232437	-0.018257
92	6	0	1.862361	-12.347693	-0.112625
93	6	0	-0.526136	-9.423007	-0.006190
94	7	0	-2.854676	-7.955171	-0.034453
95	6	0	-1.652445	-9.862568	0.701284
96	6	0	-0.598503	-8.220038	-0.719302
97	6	0	-1.786950	-7.497822	-0.706264
98	6	0	-2.814811	-9.101254	0.662481
99	6	0	-2.051560	-6.203865	-1.355232
100	07	0	-2./44481	-3./39/13	-2.384313
101	6	0	-1.108399	-5.754466	-1.131920
102	6	ő	-1 460965	-4 244088	-2.605919
104	6	Ő	-3.637157	-4.536712	-1.652569
105	7	Õ	-10.720510	-1.563298	-0.074136
106	6	0	-10.865200	-4.297822	-0.500101
107	6	0	-9.594917	-2.303300	-0.091176
108	6	0	-11.918568	-2.154807	-0.254675
109	6	0	-12.023031	-3.521373	-0.485414
110	6	0	-9.621804	-3.686331	-0.286542
111	6	0	-8.3/12/8	-4.471608	-0.237062
112	6	0	-0.004947	-3.903339	-0.12/522
113	6	0	-7.420702	-4.233999	-1 189293
115	6	0	-6 950885	-6 204512	-1 106684
116	6	ŏ	-6.269167	-5.013734	0.795720
117	6	0	-5.181104	-4.956702	1.784951
118	6	0	-3.070107	-5.074696	3.529788
119	6	0	-5.163676	-4.102260	2.882392
120	7	0	-4.183810	-5.850235	1.556444
121	6	0	-3.157532	-5.902062	2.414279
122	6	0	-4.089992	-4.160004	3.766935
123	6	0	-6.499608	-7.268318	-2.016828
124	07	0	-5.441/60	-9.200035	-3.388534
125	6	0	-3.212182	-7.700002	-1./14020
120	0	0	-1.239920	-1.144130	-3.0733331

127	6	0	-6.701954 -8.749717 -3.893063
128	6	0	-4.763309 -8.735117 -2.487929
129	26	0	-4.461592 -6.963943 -0.077961
130	7	0	-5 073222 -8 491559 1 049148
131	6	Ő	5.606652 10.710097 2.640901
122	0	0	4 100800 0 402202 1 211289
132	0	0	-4.100889 -9.402302 1.311388
133	6	0	-6.294253 -8.691148 1.555089
134	6	0	-6.603217 -9.784186 2.357567
135	6	0	-4.336846 -10.518815 2.105938
136	7	0	3.944551 10.004452 -0.217943
137	6	0	1.629065 11.463182 -0.599286
138	6	0	2 754893 9 392501 -0 183339
130	6	õ	
140	6	0	2,969272, 12,096902, 0,620922
140	0	0	2.808373 12.080803 -0.029832
141	6	0	1.55/555 10.086/02 -0.36195/
142	6	0	0.264309 9.376617 -0.302271
143	7	0	-2.172798 8.103976 -0.165889
144	6	0	0.049018 8.353309 0.628946
145	6	0	-0.777558 9.740834 -1.164019
146	6	Ő	-1 996217 9 080347 -1 069246
140	6	0	1 102009 7 720040 0 672962
14/	0	0	-1.193908 7.730949 0.072802
148	40	0	-10.022408 0.453935 0.180035
149	46	0	4.907192 -9.362578 -0.033750
150	46	0	5.669763 8.927664 -0.076154
151	17	0	4.255634 -8.119103 -1.933481
152	17	0	5.526566 -10.546959 1.909740
153	17	0	-9.281170 0.626318 -1.752179
154	17	ŏ	-11 930883 0 248947 2 137822
155	17	0	4 002506 7 627642 1 025221
155	17	0	4.992390 7.037043 -1.933321
156	1/	0	6.365/35 10.3094// 1./06961
157	1	0	8.544/25 9.606803 0.11/562
158	1	0	10.728617 8.400232 0.225449
159	1	0	10.722514 5.894513 0.258355
160	1	0	9.925689 4.076687 -1.499421
161	1	0	6.428241 6.059194 -0.074671
162	1	0	7.076660 4.170990 1.720982
163	1	0	11 103704 2 649695 -2 760678
164	1	0	12 226184 0 881470 4 015565
165	1	0	12.520104 0.001479 -4.015505
105	1	0	11.801052 -1.520010 -5.470002
166	1	0	5.000668 11.767966 -0.419041
167	1	0	2.956707 13.153442 -0.799214
168	1	0	2.774036 8.318615 -0.037423
169	1	0	0.723288 12.045304 -0.737523
170	1	0	-0.627112 10.515744 -1.906166
171	1	0	0.835419 8.060655 1.314230
172	1	0	-0 724925 4 622924 4 137727
173	1	õ	0.21/186 6.406297 2.679248
174	1	0	2 121557 2 020071 2 010571
174	1	0	-3.12155/ 3.9398/1 3.8185/1
1/5	1	0	-4.456230 5.058862 2.048400
176	1	0	-2.449507 10.894664 -3.133976
177	1	0	-4.611243 11.177006 -4.329766
178	1	0	-6.553632 9.726742 -3.670817
179	1	0	-6.238177 8.061859 -1.855714
179 180	1 1	$\begin{array}{c} 0\\ 0\end{array}$	-6.238177 8.061859 -1.855714 -3.150001 9.801331 1.607063
179 180 181	1 1 1	0 0 0	-6.238177 8.061859 -1.855714 -3.150001 9.801331 1.607063 -4.385566 11.228662 3.219086
179 180 181 182	1 1 1	0 0 0	-6.238177 8.061859 -1.855714 -3.150001 9.801331 1.607063 -4.385566 11.228662 3.219086 -6.770606 10.654046 3.759860
179 180 181 182	1 1 1	0 0 0 0	-6.238177 8.061859 -1.855714 -3.150001 9.801331 1.607063 -4.385566 11.228662 3.219086 -6.770606 10.654046 3.759860 1.636083 6.217760 1.011402
179 180 181 182 183	1 1 1 1	0 0 0 0 0	-6.238177 8.061859 -1.855714 -3.150001 9.801331 1.607063 -4.385566 11.228662 3.219086 -6.770606 10.654046 3.759860 -1.636083 6.217269 -1.911403

185	1	0	-3.438906	2.787617	-3.772476
186	1	0	-5.487199	3.229553	-2.431397
187	1	0	-7.214639	3.803529	-1.148345
188	1	0	-8.445429	6.727957	1.762317
189	1	0	-7.791353	8.656466	2.684381
190	1	0	-10.477798	6.321258	0.619987
191	1	0	-8.508689	2.506314	0.261235
192	1	0	-12.635101	5.082010	0.772887
193	1	0	10.169050	-2.051148	-1.728359
194	1	0	12.129197	0.490094	3.502089
195	1	0	12.454937	-1.958985	3.955717
196	1	0	11.040095	-3.599353	2.733171
197	1	0	10.390066	1.180509	1.867902
198	1	0	5.819468	2.825912	2.987744
199	1	0	4.543379	1.140666	4.305560
200	1	0	4.904597	-1.298125	3.818494
201	1	0	6.515579	-1.934337	2.038227
202	1	0	6.569092	1.429998	-1.704909
203	l	0	4.794668	0.964137	-3.375710
204	1	0	4.157806	-1.423757	-3.828131
205	1	0	5.332784	-3.229022	-2.584622
206	1	0	-0.740613	-3.66/623	-3.176460
207	1	0	-3.062911	-2.798763	-2.771509
208	1	0	-4.650048	-4.195347	-1.470234
209	1	0	-8.661786	-1.765469	0.035969
210	1	0	-12.605502	2.590011	0.632009
211	1	0	-12./89/41	-1.513241	-0.195933
212	1	0	-12.999831	-3.903433	-0.03/304
213	1	0	-10.92/028	-5.3/0503	-0.00000/
214	1	0	-8.83/304	-5.044204	-1.98/823
215	1	0	-/.391341	-3.465401	2.052110
210	1	0	-3.9/8988	-3.408/49	3.052119
217	1	0	-4.050/1/	-3.302190	4.028880
210	1	0	-2.213645	-3.130070	4.191993
219	1	0	-8.2231/9	-/.340388	-3.3030/4
220	1	0	-7.202708	-9.133700	-4./3830/
221	1	0	-4.965250	-10.032108	-4.103199
222	1	0	-3.765362	7 052410	-2.215200
223	1	0	-7.048070	-7.932410	2 745067
224	1	0	-7.008788	-9.890802	2.745907
225	1	0	3 5//300	11 231517	2 302351
220	1	0	-3.344399	10 780384	1 275732
227	1	0	-0.279166	-12 15/218	-0 103376
228	1	0	1 865568	-12.134218	-0.167637
22)	1	0	1.005500	12 168814	0.116500
230	1	0	2 063483	-8 535202	0.046748
232	1	0	5 883090	-6 564025	0.040740
232	1	0	6 531354	-4 693013	-1 402508
233	1	0	9 689390	-4.099015	1 515003
234	1	0	10 191066	-4.899095	-0.047837
235	1	0	9 988263	-0.752052	-0.173026
230	1	0	7 710634	-10 260800	-0 162620
238	1	0	0 254163	-7 867558	-1 287781
230	1	0	-0 110776	-5 880865	-2 230469
240	1	0	-2 380849	-6 627221	2.197524
			2.500045		

Table S2. Optimized Atomic coordinates obtained from DFT for 2^{6+} in ground state(b3lyp/LanL2DZ(f)[Ru,Pd]6-31G**[C,H,N]).

Center	Atomi	c /	Atomic	Coordinates	s (Angstroms)
Number	Num	ber	Туре	X Y	Z
1	6	0	10.010146	-1.879097	-1.564128
2	6	0	11.557415	-0.028426	-2.879958
3	7	0	9.843276	-0.552110	-1.297471
4	6	0	10.949099	-2.311523	-2.494839
5	6	0	11.732072	-1.377588	-3.161702
6	6	0	10.602391	0.340946	-1.942208
8	6	0	5 163909	-0.126585	3 141162
9	6	0	5.637325	-2.391931	2.542757
10	7	0	6.849658	-0.596855	1.517511
11	6	0	6.142634	0.271882	2.243141
12	6	0	4.907423	-1.482333	3.293049
13	44	0	8.358206	-0.164195	0.127324
14	7	0	9.766704	0.123159	1.651557
15	6	0	11.567459	0.819319	3.649700
10	6	0	0.083550	-0.81/025	2.328474
18	6	0	10 878811	1 802632	2,951309
19	6	Ő	11.342003	-0.514039	3.332526
20	7	Õ	8.416526	1.827697	0.234609
21	6	0	8.451485	4.571222	0.429534
22	6	0	9.217243	2.404460	1.151376
23	6	0	7.639619	2.548252	-0.598096
24	6	0	7.638826	3.936732	-0.518820
25	6	0	9.252005	3.787937	1.269532
26	6	0	6.983/2/	0.308945	-1.302004
27	6	0	6 293083	-0.454502	-2 160592
29	6	0	6.848138	1.716929	-1.523487
30	6	Õ	6.015182	2.241692	-2.507633
31	6	0	5.442369	0.008172	-3.156540
32	6	0	8.464079	6.041633	0.555314
33	6	0	8.372344	8.765363	0.796959
34	6	0	9.623852	6.741421	0.885198
35	6	0	7.299762	6.///061 8.007471	0.353041
30	6	0	9 57/320	8 11/6/6	0.4/1//3
38	7	0	3 365035	-10 350635	-0 249625
39	6	Õ	0.977927	-11.710586	-0.414867
40	6	0	3.356969	-11.677988	-0.353964
41	6	0	2.219008	-9.683296	-0.219671
42	6	0	0.985685	-10.323683	-0.288219
43	6	0	2.176959	-12.390896	-0.448790
44	6	0	-0.266233	-9.544099	-0.236113
45 46	6	0	-2.010337	-8.122512	-0.125519
40	6	0	-0 399446	-8 461814	0.641518
48	6	Ő	-1.596595	-7.755829	0.675477
49	6	0	-2.523423	-9.158465	-0.979785
50	6	0	-1.918926	-6.611208	1.546084
51	6	0	-2.717633	-4.514796	3.137488
52	7	0	-3.187233	-6.122631	1.427017
53	6	0	-1.016740	-6.055023	2.448176
54	6	0	-1.418263	-4.994568	3.233220 2.210656
55 56	6	0	-3.308320	-3.104430	2.210030 -1.762547
57	6	0	-6 125273	-9.565207	-3 119920
58	6	Ő	-3.891863	-10.410649	-2.689678
59	7	ŏ	-4.771691	-8.512561	-1.517032
60	6	0	-5.924029	-8.657205	-2.181980
61	6	0	-5.091197	-10.553037	-3.377911

Center	Atomi	c Af	omic	Coordinates	(Angstroms)
Number	Num	ber	Туре	X Y	Z
62	44	0	-4.326133	-7.096065	-0.038826
63 64	6	0	-7.092860	-0.104090	3 204605
65	6	0	-5.013476	-9 289224	2 035120
66	6	ŏ	-6.649301	-7.681485	1.634256
67	6	0	-7.507818	-8.296704	2.539050
68	6	0	-5.824442	-9.949813	2.948131
69	7	0	-3.950131	-5.586107	-1.440645
70	6	0	-3.733172	-3.452147	-3.208541
71	6	0	-4.981511	-4.705237	-1.583411
72	6	0	-2.838097	-5.406948	-2.162213
73	6	0	-2.688467	-4.355814	-3.056932
74	6	0	-4.891301	-3.630669	-2.461879
75	7	0	-6.031205	-6.060569	0.036046
76	6	0	-8.379005	-4.637509	0.137008
77	6	0	-7.005390	-6.472944	0.8/00/9
/8	6	0	-6.165250	-4.9/3461	-0./4/639
/9	6	0	-7.344402	-4.230/03	-0./10052
80 81	6	0	-8.2010/9	-3./093/4	0.940389
82	6	0	-9.031093	-3.889213	0.181038
82	6	0	-10.881142	-4 541445	0.178375
84	6	0	-9 652234	-2 499432	0.219271
85	7	ő	-10 771829	-1 796598	0.256078
86	6	ŏ	-12.038822	-3.795139	0.202940
87	7	Ő	-10.674552	2.269565	0.530585
88	6	0	-10.659697	5.035722	0.695142
89	6	0	-11.813725	2.935675	0.801984
90	6	0	-9.530282	2.950029	0.339885
91	6	0	-9.471933	4.344096	0.419570
92	6	0	-11.840040	4.322383	0.884522
93	6	0	-8.189448	5.050130	0.224868
94	7	0	-5.802691	6.373516	-0.112757
95	6	0	-7.871289	6.155514	1.022325
96	6	0	-7.275365	4.626879	-0.747009
97	6	0	-6.073578	5.310469	-0.895171
98	6	0	-6.659821	6.809491	0.8308/1
99	6	0	-4.9941/1	4.99/28/	-1.848610
100	07	0	-2.884023	4.309088	-3.33/03/
101	6	0	-5.073044	3 975761	-2 789690
102	6	0	-4 007590	3 757970	-3 654586
103	6	0	-2.864909	5 572230	-2 597098
105	7	ŏ	3.835022	10.167640	-0.266238
106	6	0	1.508727	11.609274	-0.655719
107	6	0	2.651391	9.537788	-0.287227
108	6	0	3.892587	11.499707	-0.439448
109	6	0	2.742715	12.250017	-0.646867
110	6	0	1.447023	10.221534	-0.469858
111	6	0	0.163870	9.490492	-0.460564
112	7	0	-2.244271	8.159225	-0.410131
113	6	0	-0.020673	8.382776	0.376722
114	6	0	-0.896284	9.906613	-1.2/46/1
115	6	0	-2.102980	9.219499	-1.228/94
110	0	0	-1.2448/1	6 564226	0.380101
11/	0	0	-1.01/301	0.304320	1.209880
110	6	0	-2.490124	4.411990 5 015554	2.004304
120	7	0	-0.750521	6 146095	2.004403
120	6	0	-3 325389	5 096369	1 810210
122	6	ŏ	-1.170143	4.828017	2.812220

123	6	0	-3.323403 9.534857 -1.991949	183	1	0	6.433942	-1.515820	-1.989654
124	6	0	-5.692726 9.997501 -3.299957	184	1	0	4.906991	-0.702078	-3.775940
125	7	0	-4.408315 8.759249 -1.709797	185	1	0	4.654040	1.776883	-4.106590
126	6	0	-3 392384 10 549661 -2 939853	186	1	0	5 923478	3 314133	-2 631487
120	6	ŏ	-4 589600 10 785253 -3 603043	187	1	Ő	7 035201	4 524699	-1 199563
127	6	Ő	5 559151 8 004018 2 240524	107	1	0	0.860752	4.324099	2.025226
120	44	0	4.027145 7.260210 0.295665	100	1	0	9.009/32	4.230400	2.023220
129	44	0	-4.02/145 /.209210 -0.285005	189	1	0	11.039530	2.848852	3.182394
130	/	0	-4.908412 8.397959 1.245963	190	I	0	10.564628	6.21/300	1.020092
131	6	0	-6.346066 9.715191 3.227900	191	1	0	6.359162	6.300002	0.106901
132	6	0	-6.158658 7.972010 1.585762	192	1	0	10.458548	8.688673	1.257174
133	6	0	-4.388590 9.455296 1.879658	193	1	0	-6.703857	-7.940292	-1.950310
134	6	0	-5.072179 10.142202 2.874544	194	1	0	-5.458356	-10.842604	3.441716
135	6	0	-6.893320 8.617954 2.575038	195	1	0	-7.754178	-9.933948	3.911146
136	7	0	6.957051 -8.409055 -0.153847	196	1	0	-8.494038	-7.887071	2,722181
137	6	Ő	9 411846 -7 128086 -0 131346	197	1	Õ	-4 015212	-9 646427	1 808469
138	6	õ	7 016370 7 060062 0 123782	108	1	Õ	0.008784	6.445536	2 523270
120	6	0	2.002265 0.127820 0.160418	190	1	0	0.724222	4 554012	2.525270
139	0	0	0.093303 -9.127839 -0.109418	199	1	0	-0.724333	-4.554012	3.900918
140	6	0	9.338944 -8.515293 -0.166827	200	1	0	-3.0/66/0	-3.694144	3./4/684
141	6	0	8.229642 -6.379408 -0.103198	201	I	0	-4.586740	-4.755070	2.081874
142	6	0	8.245164 -4.902872 -0.062143	202	1	0	-2.047794	-6.134141	-2.012521
143	7	0	8.297365 -2.157450 0.033450	203	1	0	-1.766630	-4.258144	-3.618573
144	6	0	7.382290 -4.207204 0.791271	204	1	0	-3.651316	-2.618037	-3.897013
145	6	0	9.134120 -4.182370 -0.868748	205	1	0	-5.717707	-2.937204	-2.563008
146	6	0	9 141783 -2 793583 -0 800899	206	1	0	-4 058434	2,965677	-4 393587
147	6	Ő	7 427550 -2 818442 0 820282	207	1	õ	-2 030754	4 438478	-4 212122
1/18	46	0	5 540203 0 120488 0 102147	207	1	0	2.000734	6 227283	2 485511
140	40	0	5.540295 9.120488 0.102147	208	1	0	-2.008039	0.227283	0.192146
149	40	0	-10.703508 = 0.252500 = 0.595057	209	1	0	2.084070	0.439223	-0.182140
150	46	0	5.150234 -9.363667 -0.191209	210	1	0	8.2/4620	9.839003	0.897282
151	17	0	-9.623456 0.333564 -1.702988	211	1	0	4.876069	11.952690	-0.405252
152	17	0	-11.753109 0.096550 2.503322	212	1	0	2.819533	13.322360	-0.782647
153	17	0	5.333563 8.060834 -1.997455	213	1	0	0.599262	12.188659	-0.779041
154	17	0	5.704248 10.174583 2.207009	214	1	0	-0.770896	10.747750	-1.945760
155	17	0	4.443918 -7.972223 -1.962313	215	1	0	0.770641	8.068365	1.046332
156	17	0	5.833256 -10.737769 1.600589	216	1	0	0.296207	6.252323	2.144325
157	1	0	4.323522 -12.165434 -0.352016	217	1	0	-0.488196	4.315382	3.482085
158	1	Ő	2 208692 -13 470485 -0 535788	218	1	Õ	-2 877862	3 570156	3 246335
150	1	õ	0.030320 12.253506 0.463460	210	1	Õ	2.518073	11 1/003/	3 161875
160	1	0	1.249759 = 10.706702 = 1.762727	21)	1	0	-2.510075	11.147734	4 2 4 5 2 2 5
160	1	0	-1.248758 -10.700702 -1.705757	220	1	0	-4.030080	10 146569	-4.343233
101	1	0	2.29//03 -8.003980 -0.1/2212	221	1	0	-0.048545	10.146568	-3./88821
162	1	0	0.413978 -8.198429 1.306965	222	I	0	-6.391944	8.353/90	-2.08/089
163	1	0	-3.074215 -11.097951 -2.871560	223	I	0	-3.391774	9.752881	1.575855
164	1	0	-5.212657 -11.350890 -4.102642	224	1	0	-4.605445	10.994536	3.354484
165	1	0	-7.078729 -9.733965 -3.630212	225	1	0	-6.910422	10.228021	3.999190
166	1	0	7.983505 -10.205046 -0.175377	226	1	0	-7.886524	8.270699	2.833302
167	1	0	10.234421 -9.125331 -0.181468	227	1	0	-8.554232	6.477516	1.799269
168	1	0	6.066843 -6.546560 -0.147654	228	1	0	-10.664362	6.120497	0.742957
169	1	0	10.376487 -6.630263 -0.107439	229	1	0	-12.775938	4.828542	1.090701
170	1	Ő	9 796004 -4 706661 -1 548004	230	1	Õ	-12 700055	2 333459	0.959860
171	1	õ	6 704811 -4 751606 1 438692	230	1	Õ	-8 648104	2 35/393	0.135031
172	1	0	4 140120 1 220741 2 025261	231	1	0	-0.040104 9 720467	1.020766	0.133031
172	1	0	4.149109 -1.030/41 3.903001 5.454004 2.454(00 2.6452(7	232	1	0	-0./3040/	-1.929700	1.2(0901
1/3	1	0	5.454094 -5.454088 2.045307	233	1	0	-7.4/5522	-3.3/49/6	-1.360891
1/4	1	0	4.019470 0.021249 3.705875	234	1	0	-8.98/219	-6.080013	1.619634
175	1	0	6.374882 1.320135 2.094505	235	1	0	-10.927570	-5.625111	0.136341
176	1	0	11.068904 -3.368850 -2.698745	236	1	0	-13.013376	-4.268299	0.185951
177	1	0	12.467441 -1.702755 -3.889674	237	1	0	-12.825951	-1.785339	0.278469
178	1	0	12.146188 0.735892 -3.373773	238	1	0	-7.512950	3.784204	-1.385505
179	1	0	10.432029 1.382504 -1.693676	239	1	0	-5.960113	3.356543	-2.851335
180	1	0	10.223545 -1.844908 2.051815	240	1	0	-4.360261	4.800792	1.677819
181	1	Õ	11.856835 -1.315888 3.848933						
182	1	ő	12 269911 1 094486 4 428951						
	-	9							

References:

- (1) C. J. Mathews, P. J. Smith, T. Welton, J. Mol. Catal. A-Chem., 2004, 214, 27-32.
- (2) J. Wang and G. S. Hanan, *Synlett*, 2005, 1251.

- (3) (a) A. K. Pal, B. Laramée-Milette, G. S. Hanan, *Inorg. Chim. Acta*, 2014, submitted; (b) J. E. Beves, E. L. Dunphy, E. C. Constable, C. E. Housecroft, C. J. Kepert, M. Neuburger, D. J. Price and S. Schaffner, *Dalton Trans.*, 2008, 386.
- (4) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A., Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.
- (5) A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
- (6) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B: Condens. Matter, 1988, 37, 785.
- (7) A. D. McLean, G. S. Chandler, J. Chem. Phys., 1980, 72, 5639.
- (8) P. J. Hay, W. R. Wadt, J. Chem. Phys., 1985, 82, 270.
- (9) GaussView, Version 5, Roy Dennington, Todd Keith and John Millam, Semichem Inc., Shawnee Mission KS, 2009.
- (10) I. J. Bruno, J. C. Cole, P. R. Edgington, M. K. Kessler, C. F. Macrae, P. McCabe, J. Pearson, R. Taylor, *Acta Crystallogr., Sect. B*, 2002, **58**, 389.
- (11) M. N. Burnett and C. K. Johnson, ORTEP-III: Oak Ridge Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, Oak Ridge National Laboratory Report ORNL-6895, 1996.
- (12) Persistence of Vision Pty. Ltd. (2004). Persistence of Vision (TM) Raytracer. Persistence of Vision Pty. Ltd., Williamstown, Victoria, Australia. <u>http://www.povray.org</u>.