Hydrogenation Mechanism of Carbon Dioxide and Carbon Monoxide on the Ru(0001) Surface: A Density Function Theory Study

Shi-Tong Zhang, Hong Yan,* Min Wei,* David G. Evans, and Xue Duan

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical

Technology, Beijing 100029, China

* Corresponding authors. Tel: +86-10-64412131; Fax: +86-10-64425385.

E-mail: <u>yanhong@mail.buct.edu.cn</u> (Hong Yan); <u>weimin@mail.buct.edu.cn</u> (Min Wei).

Figure S1 Direct dissociation of CO_2 to CO and O on the Ru(0001) surface (cyan, Ru; red, O; gray, C), denoted with the relative energies of initial state (IS), transition state (TS), final state (FS) of this reaction and the imaginary frequency (*F*) of the TS.

Figure S2 The formation of *trans*- and *cis*-COOH species from CO_2 and H on the Ru(0001) surface (cyan, Ru; red, O; white, H; gray, C), denoted with the relative energies of IS, TS, FS of the two reactions and the imaginary frequencies (*F*) of the TS.

Figure S3 The formation of HCOO from CO_2 and H on the Ru(0001) surface (cyan, Ru; red, O; white, H; gray, C), denoted with the relative energies of IS, TS, FS of this reaction and the imaginary frequency of the TS.

Figure S4 The dissociation of trans- and cis-COOH to CO and H on the Ru(0001) surface

(cyan, Ru; red, O; white, H; gray, C), denoted with the relative energies of IS, TS, FS of the two reactions and the imaginary frequencies of the TS.

Figure S5 The formation of HCOOH from CO and H on the Ru(0001) surface (cyan, Ru; red, O; white, H; gray, C), denoted with the relative energies of IS, TS, FS of the two reactions and the imaginary frequencies of the TS.

Figure S6 Direct dissociation of CO to C and O on the Ru(0001) surface (cyan, Ru; red, O; gray, C), denoted with the relative energies of IS, TS, FS of this reaction and the imaginary frequency of the TS.

Figure S7 The formation of COH from CO and H on the Ru(0001) surface (cyan, Ru; red, O; white, H; gray, C), denoted with the relative energies of IS, TS, FS of this reaction and the imaginary frequency of the TS.

Figure S8 The formation of CHO from CO and H on the Ru(0001) surface (cyan, Ru; red, O; white, H; gray, C), denoted with the relative energies of IS, TS, FS of this reaction and the imaginary frequency of the TS.

Figure S9 The dissociation of COH to C and OH on the Ru(0001) surface (cyan, Ru; red, O; white, H; gray, C), denoted with the relative energies of IS, TS, FS of this reaction and the imaginary frequency of the TS.

Figure S10 The dissociation of CHO to CH and O on the Ru(0001) surface (cyan, Ru; red, O; white, H; gray, C), denoted with the relative energies of IS, TS, FS of this reaction and the imaginary frequency of the TS.

Figure S11 The formation of CHOH from COH and H on the Ru(0001) surface (cyan, Ru; red, O; white, H; gray, C), denoted with the relative energies of IS, TS, FS of this reaction and the imaginary frequency of the TS.

Figure S12 The formation of CHOH from CHO and H on the Ru(0001) surface (cyan, Ru; red, O; white, H; gray, C), denoted with the relative energies of IS, TS, FS of this reaction and the imaginary frequency of the TS.

Figure S13 The formation of CH_2OH from CHOH and H on the Ru(0001) surface (cyan, Ru; red, O; white, H; gray, C), denoted with the relative energies of IS, TS, FS of this reaction and the imaginary frequency of the TS.

Figure S14 The formation of CH₃OH from CH₂OH and H on the Ru(0001) surface (cyan, Ru; red, O; white, H; gray, C), denoted with the relative energies of IS, TS, FS of this reaction and the imaginary frequency of the TS.

Figure S15 The TS of CH (a), CH_2 (b), CH_3 (c), and CH_4 (d) formation (cyan, Ru; red, O; white, H; gray, C), denoted with the relative energies and the imaginary frequency of the TS.

Figure S16 C–C coupling reactions on the Ru(0001) surface (cyan, Ru; red, O; white, H; gray, C), denoted with the relative energies of IS, TS, FS of the eight reactions and the imaginary frequencies of the TS.

The Theory for Kinetic Analysis: According to experimental observations, dissociatively adsorbed H is in equilibrium with H_2 in the gas phase:

$$H_2(g)+2* \Longrightarrow 2H^*$$

and

$$K^{0} = e^{-\Delta G^{0} / RT} = \frac{\theta_{\rm H}^{2}}{\frac{p_{\rm H_{2}}}{p^{0}} \theta_{*}^{2}}$$
(1)

where K^0 is the standard equilibrium constant; ΔG^0 is the standard difference of Gibbs free

energy; p^0 is the standard pressure, and θ_H and θ_* are the coverages of adsorbed hydrogen and free surfaces site, respectively.

According to our calculations, the H adsorption energy is about -0.80 eV with respect to H_2 in gas state. Therefore it can be estimated that the standard equilibrium constant K^0 is about 1 when T > 300K. The value of θ_H/θ_* can be viewed as a function of the hydrogen partial pressure. Assuming that the methane desorption is irreversible, the formation of methane from C and H can be described as

$$C^{*+H^{*}} \xrightarrow{k_{1}} CH^{*+*} (i)$$

$$CH^{*+H^{*}} \xrightarrow{k_{2}} CH_{2}^{*+*} (ii)$$

$$CH_{2}^{*+H^{*}} \xrightarrow{k_{3}} CH_{3}^{*+*} (iii)$$

$$CH_{3}^{*+H^{*}} \xrightarrow{k_{4}} CH_{4}(g)^{+*} (iv)$$

At steady state, we can obtain

$$r^{\text{net}} = r_1 - r_{-1} = r_2 - r_{-2} = r_3 - r_{-3} = r_4$$
(2)

$$r_i = k_i \theta_{CH_{i-1}} \theta_{\rm H} \tag{3}$$

and

$$r_{-i} = k_{-i}\theta_{CH_i}\theta_* \tag{4}$$

where r_i (r_{-i}) is the forward (reverse) reaction rate of each hydrogenation step; r_{net} is the net reaction rate; k_i (k_{-i}) is the forward (reverse) reaction rate constant, and θ_{CH_i} is the coverage of surface species CH_i (i=0, 1, 2, 3). The formation of CH₄ from CH₃ and H (step iv) requires the highest barrier in the sequence hydrogenation of C steps. Combining Eqs. (2)–(4), we can obtain

$$r_{-3} \gg r_4 \tag{5}$$

and thus

$$r_{-3} \approx r_3 \gg r_{\text{net}} \tag{6}$$

Similarly, we have

$$r_{-2} \approx r_2 \gg r_{\text{net}} \tag{7}$$

and

$$r_{-1} \approx r_1 >> r_{\text{net}} \tag{8}$$

Eqs. (6)–(8) suggest that the hydrogenation reactions are in quasi-equilibrium state on the Ru(0001) surface. As a result, the coverages of C, CH, CH_2 and CH_3 on the surface have the following relationship:

$$\frac{\theta_{\mathrm{CH}_{i}}\theta_{*}^{i}}{\theta_{\mathrm{C}}\theta_{\mathrm{H}}^{i}} = e^{-E_{i}/(RT)}$$
(9)

and therefore,

$$\theta_{CH_{i}} = e^{-E_{i}/(RT)} \theta_{C} \frac{\theta_{H}^{i}}{\theta_{*}^{i}} = e^{-E_{i}/(RT)} \theta_{C} t^{i}, i = 1, 2, 3$$
(10)

where θ_* is the coverage of free surface site; *t* represents $\theta_{\rm H}/\theta_*$; E_i is the relative stability of CH_i with reference to the C atom and equal to the energy difference between adsorbed CH_i and C. It should be noted that the ratio of H to free surface site coverage, *t*, is related to the H₂ partial pressure: $t = \sqrt{K^0 p_{\rm H_2}/p^0}$ (K^0 is the standard equilibrium constant for H₂ dissociation on Ru surface; p^0 is the standard pressure; $p_{\rm H_2}$ is the H₂ partial pressure). If $p_{\rm H_2}$ varies in the range 1–100 atm, the value of *t* can be estimated between 1 and 10. Assuming that $p_{\rm H_2}$ does not change significantly during the reaction, *t* can be expected to be a constant.

For the C-C coupling reactions, the reaction rates can be expressed as

$$r_i = k_i \theta_{\mathrm{CH}_x} \theta_{\mathrm{CH}_y} \tag{11}$$

The reaction rates of C–C coupling reactions can be calculated using transition-state theory, which are expressed as

$$r_{\rm CH_i+CH_j} = A_1 e^{-(E_{a,i}/RT)} \theta_{\rm CH_i} \theta_{\rm CH_j}, \quad i, j = 1-3$$
(12)

and the net reaction rate of the sequence carbon hydrogenation reactions is

$$r_{\rm net} = r_i - r_{-i} = r_4 = A_2 e^{-(E_{a,3}/RT)} \theta_{\rm CH_3} \theta_{\rm H}, \quad i = 1 - 3$$
(13)

where A_1 and A_2 are the pre-exponential factors (which are usually assumed to be 10^{13} s^{-1});¹ $E_{a,i}$ is the energy barrier; *T* is the temperature.

References:

(1) J. Chen and Z. P. Liu, J. Am. Chem. Soc., 2007, 130, 7929.