# **Supporting information**

# Bio-derived CuO nanocatalyst for oxidation of aldehyde: a greener approach

Chandan Tamuly<sup>a\*</sup>, Indranirekha Saikia<sup>a</sup>, Moushumi Hazarika<sup>a</sup>, and Manash R. Das<sup>b</sup>

<sup>a</sup> CSIR-North East Institute of Science and Technology. Branch Itanagar Arunachal Pradesh-791110, India

<sup>b</sup> CSIR-North East Institute of Science and Technology. Jorhat, Assam-785006, India Corresponding author: Telefax: +91360-2244220 e-mail: c.tamuly@gmail.com

### **Materials and Methods**

#### Synthesis of CuO nanoparticles:

In this method, the peel of *Musa balbisiana* was dried then burnt burnt in muffle furnace at 500°C to obtained ash of the peel. To the 1 g of ash of the peel, 20 ml of distilled water was added and filtered. 5 ml 1M  $CuSO_4 \cdot 5H_2O$  solution was added to the filtered and stirred for 10 minute. Light blue precipitate was obtained. After filtration, the precipitate was heated for 2 h at 500°C temperature for the formation of powder CuO nanoparticles. It is the first report of eco-friendly bio-derived synthesis of CuO nanoparticles by using peel of *Musa balbisiana*.

## Characterization

Scanning electron microscopy (SEM) characterization was performed on JEOL JSM - 6360 at 15 kV. X-ray diffraction (XRD) measurement were carried out by Rigaku X-ray diffractometer (Model: ULTIMA IV, Rigaku, Japan) with Cu-K $\alpha$  X-ray source ( $\lambda = 1.54056$ Å) at voltage 40 kV. The X-ray photoelectron spectroscopy (XPS) analysis was done on instrument ESCA-3000 (VG Scientific, UK). The source used is AlKalpha having energy 1486.6 eV The high resolution transmission electron microscopy (HRTEM) images were recorded by a JEOL Model 2100 EX, Japan operated at voltage of 200 kV.

#### **Optimization of reaction**

The oxidation reaction was first optimized by using different solvent like acetonitrile, ethanol, DMSO etc under the same reaction condition of temperature (60°C) and pressure (1 atm) and amount of CuO (2 mol%) catalyst.

#### Catalytic oxidation of aldehydes

To 5 ml of acetonitrile added 10 mmol aldehyde and 10 equiv. 30% H<sub>2</sub>O<sub>2</sub> and then refluxed for about 1 h at temperature 60°C in presence of 2 mol % CuO nanoparticles. The progress of the reaction was monitored by thin layer chromatography (TLC). The reaction mixture was extracted with ethyl acetate. The combined organic layer was dried with NaSO<sub>4</sub> and concentrated via rotary evaporation. The CuO catalyst could be used consecutively for five times for the oxidation of 4-nitrobenzyldehyde (1st recycle 95%, 2nd recycle 94% and 3<sup>rd</sup> recycle 92%, 4<sup>th</sup> recycle 91% and 5<sup>th</sup> recycle 90% 4-nitrobenzoic acid was obtained). The product was purified by column chromatography by using hexane/ethyl acetate as solvent system in different concentration to obtain the pure compound. If the solubility of crude product is poor in organic solvent, the residue was purified by pre-loaded silica-gel column chromatography with appropriate methanol/chloroform eluent system. The structure of the compounds was further confirmed by <sup>1</sup>H NMR, <sup>13</sup>C NMR, FT-IR, GC-MS analysis.

$$CuSO_{4.}5H_{2}O + K^{+} + CO_{3}^{2^{-}} + Na^{+} - H_{2}O Cu(OH)_{2} + K_{2}SO_{4} + Na_{2}SO_{4} + CO_{2}$$

$$Cu(OH)_{2} - \Delta CuO + H_{2}O$$

$$CuO + H_{2}O - \Delta CuO$$

$$CuO$$

Scheme 1: Plausible mechanism in synthesis of CuO nanoparticles by using peel of *Musa* balbisiana

Scheme 2. Spectroscopic analysis of isolated compounds

i) 4-nitro benzoic acid:

соон

IR (KBr, cm<sup>-1</sup>) v: 3078, 2921, 2851, 1708, 1646, 1600, 1522, 1522, 1462, 2427, 1348, 1302, 1267, 1120, 1107, 877, 789, 716 <sup>1</sup>HNMR (CDCl<sub>3</sub>, 300 MHz) δ: 8.24 (d, 2H), 8.29(d, 2H) <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz) δ: 175.7, 136.3, 131.1, 123.5. GCMS (M/Z %): 167 (M<sup>+</sup>, 100), 137 (20), 120 (42), 108 (24), 81(14), 65(56).

ii) 3-Nitrobenzoic acid:

IR (KBr, cm<sup>-1</sup>) v: 3087, 2994, 2873, 2810, 2667, 2540, 1994, 1848, 1691, 1616, 1530, 1482, 1449, 1416, 1354, 1326, 1291, 1151, 1084, 926, 824, 810, 777, 722, 702, 662, 650, 567, 528. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$ : 9.65(s, 1H), 8.96(s, 1H), 8.48(d, 1H), 8.45(d, 1H), 7.73(t, 1H) <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz)  $\delta$ : 170.1, 148.4, 135.8, 130.9, 129.9, 128.4, 125.3. GCMS (M/Z %): 167 (M<sup>+</sup>, 100), 150 (6), 121 (14), 104 (4).

iii) 2-chloro benzoic acid:



IR (KBr, cm<sup>-1</sup>) v: 3500, 3104, 3034, 2960, 2856, 2649, 2517, 1934, 1714, 1630, 1589, 1521, 1475, 1384, 1353, 1267, 1141, 1118, 1046, 895, 851, 803, 736, 539. <sup>1</sup>HNMR (CDCl<sub>3</sub>, 300MHz) δ: 8.37(d, 1H), 8.23(m, 1H), 8.20(m, 1H), 8.18(d, 1H) <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz) δ: 168.9, 150, 135.9, 133.9, 133.1, 126.4, 121.5. GCMS (M/Z %): 156 (M<sup>+</sup>, 100)

iv) 4-chloro-3-nitrobenzoic acid:



IR (KBr, cm<sup>-1</sup>) v: 3527, 3460, 3085, 2954, 2885, 2839, 2661, 2529, 1957, 1828, 1694, 1630, 1602, 1542, 1426, 1357, 1319, 1254, 1121, 1050, 936, 912, 855, 811, 780, 769, 747, 728, 698, 662, 606, 529, 481.

<sup>1</sup>HNMR (CDCl<sub>3</sub>, 300MHz) δ: 8.48 (s, 1H), 8.21 (dd,1H), 7.79 (dd,1H)

<sup>13</sup>C NMR (DMSO-d<sub>6</sub>, 75 MHz) δ: 157.0, 139.9, 125.4, 123.8, 122.9, 122.2, 117.9.

GCMS (M/Z %): 201 (M<sup>+</sup>, 40), 203 (M+2, 8), 171 (18), 115(28), 99(100), 69(54), 55(58).

v) 4-Chloro-3,5-dinitrobenzoic acid:

IR (KBr, cm<sup>-1</sup>) v: 3084, 2885, 2816, 2661, 2523, 1709, 1614, 1546, 1466, 1411, 1352, 1300, 1272, 1184, 1066, 923, 747, 720, 633, 544. <sup>1</sup>HNMR (CDCl<sub>3</sub>, 300MHz) δ: 8.71(s, 2H)

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz) δ: 156.2, 142.3, 125.0, 121.0, 116.0,

GCMS (M/Z %): 246 (M<sup>+</sup>, 100), 248 (M+2, 18).



Figure S1: FT-IR spectra of CuO nanoparticles synthesised by *Musa balbisiana* 



Figure S2: EDX spectra of CuO nanoparticles.



Figure S3: XRD spectrum of CuO catalyst after 5 recycle



Figure S4: TEM image after 5 recycle of CuO cata

| SL | Catalyst                                  | Oxidising                         | Temperature | Solvent        | Time | Yield | Ref     |
|----|-------------------------------------------|-----------------------------------|-------------|----------------|------|-------|---------|
| No |                                           | agent                             |             |                | (hr) | (%)   |         |
| 1  | [CH3( <i>n</i> -                          | 30% H <sub>2</sub> O <sub>2</sub> | 90°C        | Toluene        | 5    | 88    | [1]     |
|    | C8H17)3N]HSO4                             |                                   |             |                |      |       |         |
| 2  | Pd/C                                      | O <sub>2</sub> (air)              | Room        | Water:         | 8    | 86    | [2]     |
|    |                                           |                                   | temperature | Methanol (2:1) |      |       |         |
| 3  | 3,5-                                      | $30\% H_2O_2$                     | Room        | Dichloroethane | 4    | 78    | [3]     |
|    | Bis(perfluoroocty                         |                                   | temperature |                |      |       |         |
|    | l) benzeneselinic                         |                                   |             |                |      |       |         |
|    | acid                                      |                                   |             |                |      |       |         |
| 4  | (NH <sub>4</sub> ) <sub>2</sub> (Fe)(SO4· | 70% t-                            | 80°C        | DMSO           | 6.6  | 90    | [4]     |
|    | 6H <sub>2</sub> O                         | BuOOH                             |             |                |      |       |         |
|    | - 2 -                                     |                                   |             |                |      |       |         |
| 5  | CuO                                       | $30\% \ H_2O_2$                   | 60°C        | Acetonitrile   | 1    | 95    | Present |
|    |                                           |                                   |             |                |      |       | work    |

Table S1: Comparison of the CuO catalyst for the oxidation of 4-nitrobenzyldehyde with earlier reported catalyst.

References

1. K. Sato, M. Hyodo, J. Takagi, M. Aoki, R. Noyori, Tetrahedron Lett., 2000, 41,1439-

1442

2. R.K. Sodhi, S. Paul, J.H. Clark, Green Chem., 2012, 14,1649-1656.

3. G.-J.T. Brink, J.M. Vis, I.W.C.E. Arends, R.A. Sheldon, *Tetrahedron* 2002, 58, 3977-3983.

4. D. Chakraborty, C. Majumder, P. Malik, Appl. Organomet. Chem., 2011, 25, 487-490.