Supplemental materials for:

Photoelectrochemical Response and Electronic Structure Analysis of Mono-Dispersed Cuboid-Shaped Bi₂Fe₄O₉ with Strong Near-Infrared Absorption

Yangyang Zhang, Yiping Guo^{*}, Huanan Duan, Hua Li, Pei Wang, Lei Yang, Chongyang Sun, Biyi Xu, Hezhou Liu^{*}

State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China

*Corresponding author.

Email Address: ypguo@sjtu.edu.cn (Yiping Guo)

hzhliu@sjtu.edu.cn (Hezhou Liu)

Tel: +86-21-34202549

Fax: +86-21-34202749

Figure S1: The k-points sampling in Brillouin zone of the $Bi_2Fe_4O_9$ (BFO) conventional unit cell.

Figure S2: EDS data of the fragments around the BFO cuboids. The C and Pt peaks that originate from the conductive tape and the Pt coating, correspondingly, for

enhancing conductivity are not shown. The ratio of Fe: Bi in the fragments is 1.78:1 which is similar to that in BFO cuboids.

Figure S3: The light brown transparent solution of $Fe(OH)_3$ (a) and its Tyndall effect (b).

		Spectrum 1
0 1 2 3 Full Scale 4630 cts Cursor:0	4 5 6 7	8 9 10 keV
Elements	wt. %	at. %
C K	17.54	35.69
0 K	31.00	47.37
Na K	3.06	3.29
Fe K	25.00	10.94
Bi M	23.39	2.74
Total	100	0.00

Figure S4: EDS data of the dried sol. The C peak is originated from the conductive tape. The brown sol is dried at 60 $^{\circ}$ C for 12h to remove all solvent. The content of Fe

in the dried sol is 4 times to that of Bi implying the brown sol is primarily composed by iron hydroxide.

Interplanar spacing formula in orthorhombic system: $d = \frac{1}{\sqrt{\left(\frac{h}{a}\right)^{2} + \left(\frac{k}{b}\right)^{2} + \left(\frac{l}{c}\right)^{2}}}$ Lattice parameters of Bi₂Fe₄O₉: a=0.794 nm, b=0.844 nm, c=0.601 nm d₍₁₄₁₎= 0.1931 nm d₍₃₃₀₎= 0.1928 nm

Fig S5: Calculation of the interplanar spacing of (141) plane and (330) plane. In many papers, the peak at ~47° is usually indexed as (141). Based on the calculation above, the diffraction peak of (330) will as well appear at ~47°, that's why this peak is also strengthened in the XRD pattern of DB-BFO.

Figure S6: The XRD pattern of the light yellow precipitate dried at 60 $^{\circ}$ C, the standard XRD pattern of Bi₂O₃ with a space group of P21/c is listed below. The light yellow precipitate is obtained as follows. 0.3 mmol Bi(NO₃)₃·5H₂O was added into 40 ml DI water under constant stirring for 1 h and a homogeneous milky suspension was formed as described in the manuscript. The milk-white suspension turned into a light yellow suspension promptly upon the addition of 0.75 mol NaOH, as shown in the inset.

Figure S7: FE-SEM images of $Bi_2Fe_4O_9$ crystals synthesized at 180 °C with various concentrations of NaOH: (a) 18.75 M NaOH, (b) 12.5 M NaOH, and (c) 6.25 M NaOH for 24 h.

Figure S8: XRD patterns of the products synthesized in various concentrations of NaOH: (a) 18.75 M, (b) 12.5 M, (c) 6.25 M, (d) 2.5 M, (e) 1 M, (f) 0.5 M and (g) 0.25M at 180 $^{\circ}$ C for 24 h.

Fig S9: Schematic electronic DOS of Fe^{3+} in octahedral O_h and tetrahedral T_d coordination.