Electronic Supporting Information (ESI)

Thermomechanical relaxation and different water states in cottonseed protein derived bioplastics

H.-B. Yue^{a, b, c}*, J. P. Fernandez-Blazquez^b, P. S. Shuttleworth^{d*}, Y.-D. Cui^a, G. Ellis^d

^a State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China

^b IMDEA Materials Institute, c/Eric Kandel 2, Getafe 28906, Madrid, Spain

^c E.T.S.I. Industriales, Universidad Politécnica de Madrid, c/José Gutiérrez Abascal 2, 28006 Madrid, Spain

^d Department of Polymer Physics, Elastomers and Energy, Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain

Corresponding authors: hangbo.yue@imdea.org (H. Yue); peter@ictp.csic.es (P. Shuttleworth)

Content

Table S1 Enthalpy of ice-melting and water vaporisation of the cross-linked CPBs

Table S2 DSC results related to the bioplastics with different water content

Fig. S1 Plots of the melting temperature (T_m) of water in the CPBs networks versus different water content.

Fig. S2 Infrared spectra recorded from different positions of samples (a) CP-FA, (b) CP-GX and (c) CP-GA. Spectrum of (d) water and (e) CPL-0CL are shown for comparison.

Fig. S3 Plot of the intensity of the aldehyde C=O band at 1697 cm⁻¹ vs the intensity observed at 3450 cm^{-1} , reflecting the relative concentration of water.

Scheme S1 Cross-linking reactions of protein molecules with different aldyhydes

References

Samples	Pure Wate r	CP-0CL- WA30min	CP-0CL - WA2h	CP-FA- WA30min	CP-FA- WA2h	CP-GX- WA30min	CP-GX- WA2h	CP-GA- WA30min	CP-GA- WA2h
ΔH_m $(J/g)^a$	333.5	942	363	783	1029	560	592	336	435
ΔH_{v} $(J/g)^{b}$	2260	8910	3567	7924	10431	5704	5849	3645	4420
$\Delta H_v\!/\Delta H_m$	6.7	9.4	9.8	10.1	10.1	10.1	9.8	10.8	10.1

Table S1 Enthalpy of ice-melting and water vaporisation of the cross-linked CPBs after water absorption for 30 min and 2h

^a Enthalpy of ice-melting, normalized with water mass; ^b Enthalpy of water vaporisation, normalized with water mass; WA: water absorption

Enthalpy of ice-melting (ΔH_m) , normalized with the mass of water (absorbed), is obtained from Equation S1.

$$\Delta H_{\rm m} = \frac{\Delta H_{W_{\rm CPBs}} \times W_{\rm CPBs}}{W_{\rm H_2O}^{\rm abs}}$$
(S1)

where $\Delta H_{W_{CPBs}}$ is calculated by integrating the ice-melting endothermic peak, related to the total mass of the tested sample (W_{CPBs}) ; $W_{H_2O}^{abs}$ is the weight of water adsorbed onto the CPBs bioplastic. Enthalpy of water vaporization (ΔH_v) , shown in Table S1, is calculated using the same concept.

Samples	WC8	WC16	WC28	WC34	WC52	WC53	WC66
ω _{H2O} (%)	8	16	28	34	52	53	66
Peak temp. (°C)		-12.9	-5.3	-3	-0.5	-0.1	1.9
$\Delta H (J/g)$		24.5	53.7	75.5	143.1	145.9	210.4
$W_{\rm H_2O}^{\rm free}$ (mg)	0	0.27	0.85	1.49	3.00	3.54	8.01
Water added (mg)	0.47	0.67	1.68	2.50	4.00	4.70	9.24
$W_{\rm H_2O}^{\rm non-free}$ (mg)	0.47	0.40	0.83	1.01	1.00	1.16	1.23
$\omega_{\mathrm{H_2O}}^{\mathrm{free}}$ (%)	0	40	51	59	75	75	87
$\omega_{\mathrm{H_2O}}^{\mathrm{non-free}}$ (%)	100	60	49	41	25	25	13

Table S2 (A) DSC results related to the CP-0CL bioplastics with different water content

Symbol notes: water content, ω_{H_2O} ; melting enthalpy, ΔH ; weigh of free water, $W_{H_2O}^{\text{free}}$; weight of non-freezable water, $W_{H_2O}^{\text{non-free}}$; weight percentage of free water $\omega_{H_2O}^{\text{free}}$; weight percentage of non-free water $\omega_{H_2O}^{\text{non-free}}$. WC: water content.

Samples	WC8	WC16	WC28	WC34	WC52	WC53	WC66
@ _{H2O} (%)	8	16	28	34	52	53	66
Peak temp. (°C)		-12.9	-5.3	-3	-0.5	-0.1	1.9
$\Delta H (J/g)$		24.5	53.7	75.5	143.1	145.9	210.4
$W_{\rm H_2O}^{\rm free}$ (mg)	0	0.23	1.18	2.14	4.93	7.84	11.07
Water added (mg)	0.66	1.50	2.30	3.34	6.86	10.37	13.48
$W_{\rm H_2O}^{\rm non-free}$ (mg)	0.66	1.27	1.12	1.20	1.93	2.53	2.41
$\omega_{ m H_{2}O}^{ m free}$ (%)	0	16	52	64	72	76	82
$\omega_{\mathrm{H_2O}}^{\mathrm{non-free}}$ (%)	100	84	48	36	28	24	18

Table S2 (B) DSC results related to the CP-FA bioplastics with different water content

Symbol notes: water content, ω_{H_2O} ; melting enthalpy, ΔH ; weigh of free water, $W_{H_2O}^{\text{free}}$; weight of non-freezable water, $W_{H_2O}^{\text{non-free}}$; weight percentage of free water $\omega_{H_2O}^{\text{free}}$; weight percentage of non-free water $\omega_{H_2O}^{\text{free}}$; weight percentage of non-free water $\omega_{H_2O}^{\text{non-free}}$. WC: water content.

Samples	WC8	WC16	WC28	WC34	WC52	WC53	WC66
ω _{H2O} (%)	8	16	28	34	52	53	66
Peak temp. (°C)		-12.9	-5.3	-3	-0.5	-0.1	1.9
$\Delta H (J/g)$		24.5	53.7	75.5	143.1	145.9	210.4
$W_{\rm H_2O}^{\rm free}$ (mg)	0	0.58	1.23	2.70	4.45	8.11	11.50
Water added (mg)	0.81	1.34	2.28	3.87	6.33	10.02	13.57
$W_{\rm H_2O}^{\rm non-free} ({\rm mg})$	0.81	0.76	1.05	1.17	1.88	1.91	2.07
$\omega_{ m H_{2}O}^{ m free}$ (%)	0	43	54	70	70	81	85
$\omega_{\mathrm{H_2O}}^{\mathrm{non-free}}$ (%)	100	57	46	30	30	19	15

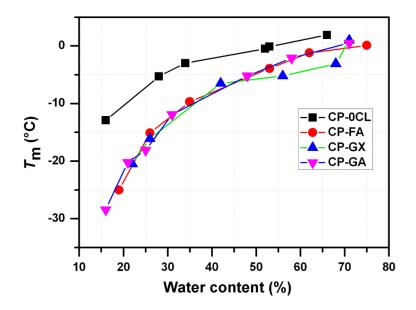
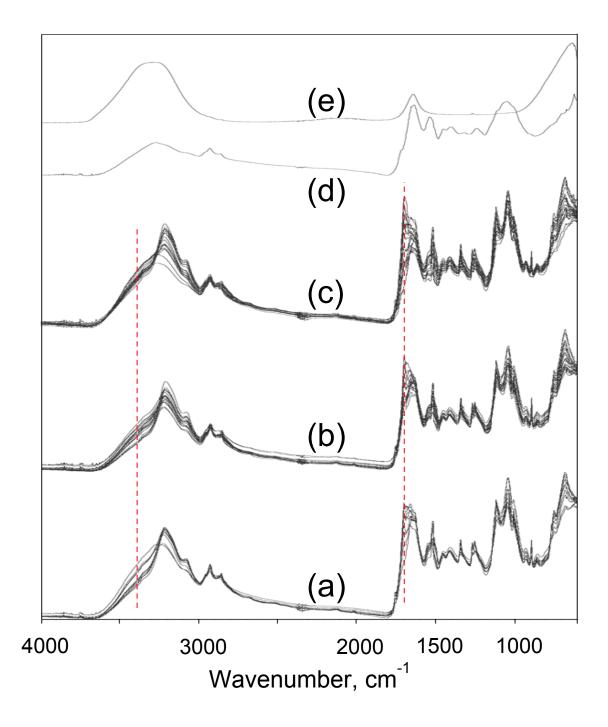
Table S2 (C) DSC results related to the CP-GX bioplastics with different water content

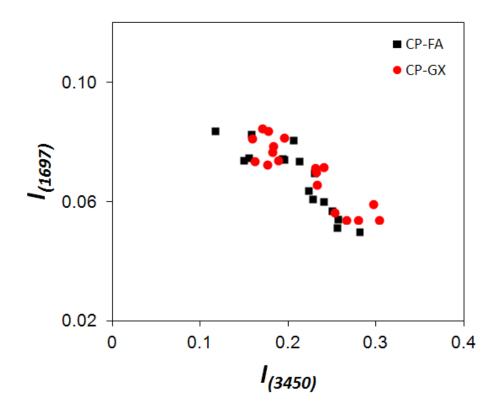
Symbol notes: water content, ω_{H_2O} ; melting enthalpy, ΔH ; weigh of free water, $W_{H_2O}^{\text{free}}$; weight of non-free water, $W_{H_2O}^{\text{non-free}}$; weight percentage of free water $\omega_{H_2O}^{\text{free}}$; weight percentage of non-free water $\omega_{H_2O}^{\text{non-free}}$. WC: water content.

Samples	WC8	WC16	WC28	WC34	WC52	WC53	WC66
@ _{H2O} (%)	8	16	28	34	52	53	66
Peak temp. (°C)		-12.9	-5.3	-3	-0.5	-0.1	1.9
$\Delta H (J/g)$		24.5	53.7	75.5	143.1	145.9	210.4
$W_{\rm H_2O}^{\rm free}$ (mg)	0.26	0.72	0.83	1.48	3.15	5.06	10.97
Water added (mg)	1.00	1.73	1.73	2.31	4.54	6.75	13.34
$W_{\rm H_2O}^{\rm non-free}$ (mg)	0.74	1.01	0.90	0.83	1.39	1.69	2.37
$\omega_{ m H_{2O}}^{ m free}$ (%)	26	42	48	64	69	75	82
$\omega_{\rm H_2O}^{\rm non-free}$ (%)	74	58	52	36	31	25	18

Table S2 (D) DSC results related to the CP-GA bioplastics with different water content

Symbol notes: water content, ω_{H_2O} ; melting enthalpy, ΔH ; weigh of free water, $W_{H_2O}^{\text{free}}$; weight of non-freezable water, $W_{H_2O}^{\text{non-free}}$; weight percentage of free water $\omega_{H_2O}^{\text{free}}$; weight percentage of non-free water $\omega_{H_2O}^{\text{non-free}}$. WC: water content.


Fig. S1 Plots of the melting temperature (T_m) of water in the CPBs networks versus different water content.

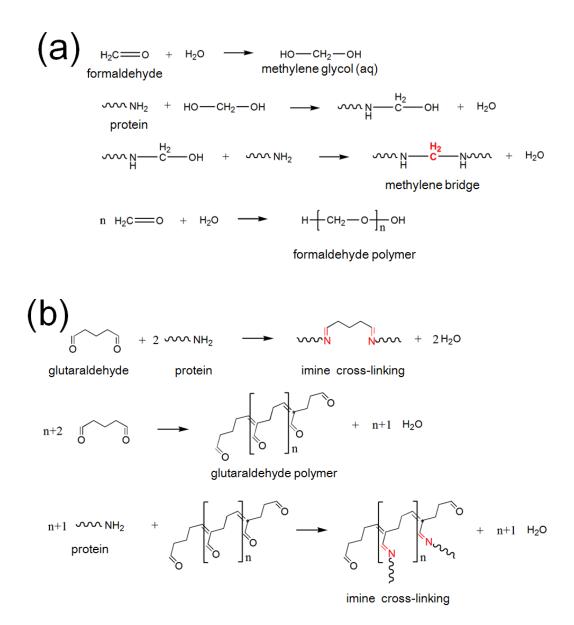

Fig. S2 Infrared spectra recorded from different positions of samples (a) CP-FA, (b) CP-GX and (c) CP-GA. Spectrum of (d) water and (e) CPL-0CL are shown for comparison.

Figure S2 shows infrared spectra recorded from various positions on the different samples using an ATR objective with a Ge crystal with a contact surface of 100 μ m diameter. It can be observed that for each cross-linked sample heterogeneity is

observed, notably reflected in the relative intensity of the band at 1697 cm⁻¹ associated with unreacted or partially reacted aldehyde carbonyl stretching vibration (marked). Along with other band changes, it is also interesting to note the variations in the N-H and O-H stretching region. In this latter region, if we compare the intensity observed for the 1697 cm⁻¹ band with that of the OH region (marked), we observe that an inverse correlation exists (see Figure S3), which provides evidence for a heterogeneous water uptake in the system, being lower when more aldehyde is present. Although this was a generalised observation the best correlations were observed for the spectra from CP-FA and CP-GX (shown).

Fig. S3 Plot of the intensity of the aldehyde C=O band at 1697 cm⁻¹ vs the intensity observed at 3450 cm⁻¹, reflecting the relative concentration of water.

Scheme S1 Cross-linking reactions of protein molecules with formaldehyde showing the formation of methylene bridge (a); and with glutaraldehyde monomer/polymer, creating imine covalent bonds (b).

Three aldehydes (formaldehyde, glyoxal, and glutaraldehyde) react with protein molecules in a quite different manner, creating the cross-linked structures. Methylene bridge formation is responsible for the formaldehyde cross-linked networks (Scheme S1a)¹; however the formaldehyde polymer (in FA solution) cannot generate further methylene bridges. As for the glutaraldehyde cross-linked networks (Scheme S1b), both GA monomer and GA polymer are able to react with protein molecules through

imine covalent bond formation^{1, 2}. Glyoxal maintains the same mechanism as GA.

References

- 1. J. A. Kiernan, *Microscopy Today*, 2000, **1**, 8-12.
- H. B. Yue, Y. D. Cui, P. S. Shuttleworth and J. H. Clark, *Green Chem*, 2012, 14, 2009-2016.