Supporting Information for

Sandwich-like Titania Thin Films with One/Three-Dimensional Nanostructures for Photocatalytic Applications

By

Ming-Zao Tang and Jin-Ming Wu*

The average grain size d_{hkl} and the fraction of anatase $w_A = 1 - w_R$ as listed in Table 1 were estimated from the corresponding XRD patterns using the followed Eq. (1) and Eq. (2), respectively.

$$d_{hkl} = k\lambda / (B\cos(2\theta))$$
 Eq. (1)
 $w_R = 1/(1 + 0.8I_A / I_R)$ Eq. (2)

In Eq. (1),¹ λ is the wavelength of the Cu K α radiation, θ the Bragg's diffraction angle, *B* the full width at half maximum intensity of the peak, and k = 0.94. In Eq. (2),² I_A and I_R are X-ray integrated intensities of the (101) peaks of anatase and rutile, respectively.

References

- 1. E. Sanchez and T. Lopez, Mater. Lett., 1995, 25, 271.
- 2. R.A. Spurr and H. Myers, Anal. Chem., 1957, 29, 760.

Figure S1 (a) UV-vis diffuse reflectance spectra of rutile nanoflowers precipitated on sol-gel anatase layer (SG/NF). (b) Re-plotting of (a) in the $\alpha^{1/2} \sim hv$ coordinate to evaluate the corresponding band gap, assuming an indirect transition between bands for titania.

Figure S2 XRD patterns of rutile nanoflowers precipitated on sol-gel anatase layer (SG/NF).