Electronic Supplementary Information

Single-LED solar simulator for amorphous Si and dye-sensitized solar cells

Tomohiko Nakajima,* Kentaro Shinoda and Tetsuo Tsuchiya

Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.

Sample synthesis and characterization

Polycrystalline samples were prepared by a solid state reaction. Mixed powder of starting reagents in an appropriate molar ratio were ground, pressed into a pellet and heated. The detailed synthetic conditions are listed in Table S1. The phase analysis was carried out by X-ray diffraction (XRD) using a SmartLab (Rigaku). The surface morphology of polycrystalline samples was studied by a scanning electron microscope (SEM) using a JSM5400 (JEOL).

Table ST Synthesis conditions for polycrystalline samples.				
Material	Starting reagents ^a	Temp. / °C	Time / h	Atmosphere
CsVO ₃	Cs ₂ CO ₃ (5mol% excess), V ₂ O ₅	430	24	air
$Zn_3V_2O_8$	ZnO, V ₂ O ₅	750	24	air
$Ba_{2.91}MgSi_2O_8$: $Eu_{0.04}$, $Mn_{0.05}$	BaCO ₃ , MgO, SiO ₂ Eu ₂ O ₃ , MnCO ₃ , NH ₄ Cl ^a	1300	3	1%H ₂ /Ar
$Ba_{1.83}Sr_{0.5}Ca_{0.5}MgSi_2O_8{:}Eu_{0.02}Mn_{0.15}$	BaCO ₃ , SrCO ₃ , CaCO ₃ , MgO, SiO ₂ Eu ₂ O ₃ , MnCO ₃ , NH ₄ Cl ^a	1300	3	1%H ₂ /Ar
$Sr_{2.83}MgSi_2O_8$:Eu_{0.02}Mn_{0.15}	SrCO ₃ , MgO, SiO ₂ , Eu ₂ O ₃ , MnCO ₃ , NH ₄ Cl ^a	1300	3	1%H ₂ /Ar
$Ca_{2.83}MgSi_2O_8{:}Eu_{0.02}Mn_{0.15}$	CaCO ₃ , MgO, SiO ₂ , Eu ₂ O ₃ , MnCO ₃ , NH ₄ Cl ^a	1300	3	1%H ₂ /Ar
$Ba_{0.985}Mg_{1.8}Si_2O_7{:}Eu_{0.015}Mn_{0.2}$	BaCO ₃ , MgO, SiO ₂ , Eu ₂ O ₃ , MnCO ₃ , NH ₄ Cl ^a	1300	3	1%H ₂ /Ar
$Ba_{0.95}Al_2Si_2O_8:Eu_{0.05}$	BaCO ₃ , MgO, Al ₂ O ₃ , Eu ₂ O ₃ , NH ₄ Cl ^a	1300	3	1%H ₂ /Ar
$Sr_{0.95}Al_2Si_2O_8:Eu_{0.05}$	SrCO ₃ , MgO, Al ₂ O ₃ , Eu ₂ O ₃ , NH ₄ Cl ^a	1300	3	1%H ₂ /Ar
LiGaO ₂ :Fe _{0.01}	Li ₂ CO ₃ , Ga ₂ O ₃ , Fe acetylacetonate	1000	12	air

Table S1 Synthesis conditions for polycrystalline samples.

^a 30 mol% NH₄Cl was added as a flux

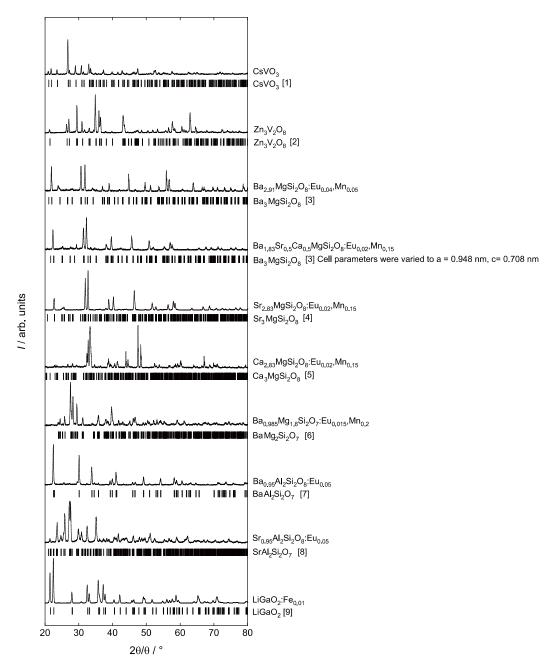


Figure S1: XRD patterns of obtained samples, and simulated peak positions (vertical marks) as references. The simulated peak positions were not refined for our samples.

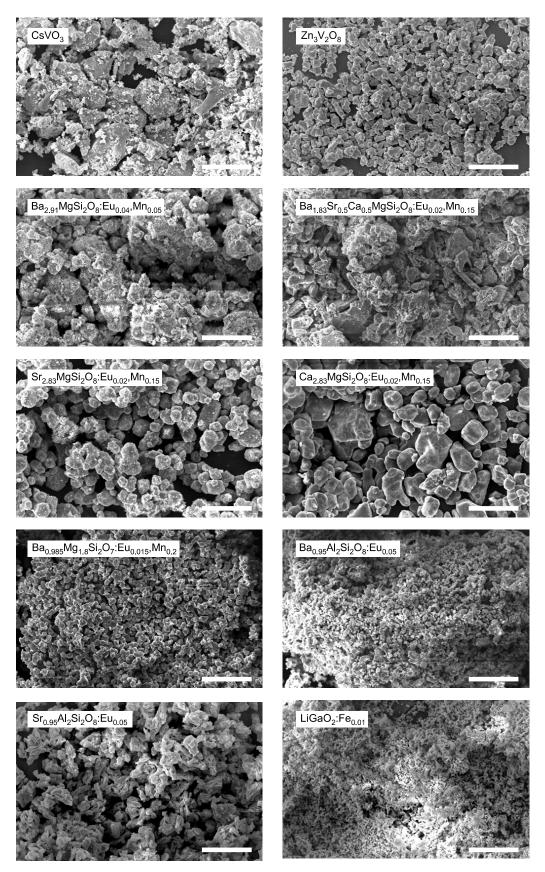


Figure S2: SEM images for the obtained samples. The scale bar indicates 50 $\mu m.$

References

- 1 F. C. Hawthorne et al., J. Solid State Chem., 1977, 157, 170.
- 2 R. Gopal et al., Can. J. Chem., 1971, 49, 3056.
- 3 C-H. Park et al., J. Solid State Chem., 2009, 182, 496.
- 4 Y. Yonesaki et al., J. Solid State Chem., 2009, 182, 547.
- 5 P. B. Moore et al., Am. Mineralogist, 1972, 57, 1355.
- 6 C-H. Park et al., J. Solid State Chem., 2009, 182, 1884.
- 7 Y. Takeuchi et al., J. Am. Ceram. Soc., 1951, 34, 283.
- 8 G. Chiari et al., Am. Mineralogist, 1975, 60, 111.
- 9 G. M. Kuzmicheva et al., Inorg. Mater., 2001, 37, 281.