SUPPORTING INFORMATION

Condensed Fukui Function Predicts Innate C-H Radical Functionalization Sites On Multi-nitrogen Containing Fused Arenes

Yuchi Ma,^a Jin Liang,^{a,b} Dongmei Zhao,^b Yue-Lei Chen,*^a Bing Xiong,*^a and Jingkang Shen*^a

^a Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.

^b School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 100016, P. R. China.

E-mail: Y. -L. C: <u>chenyuelei@gmail.com</u>, B. X.: <u>bxiong@simm.ac.cn</u>

Table of Contents

1. General	2-3
2. Experimental details	3-9
3. Computational details	9-26

Condensed Fukui Function Predicts Innate C-H Radical Functionalization Sites On Multi-nitrogen Containing Fused Arenes Experimental Details

General: Reagents were purchased and used without further purification, unless otherwise stated. Yields refer to chromatographically and spectroscopically (¹H-NMR) homogeneous material, unless otherwise stated. Flash chromatography was performed on silica gel (300-400 mesh ASTM), and monitored by thin layer chromatography (TLC) on HSGF-254 (10-40 µm) TLC plates. NMR data were collected on a Varian Mercury-300 High Performance Digital FT-NMR, a Varian Mercury-400 High Performance Digital FT-NMR, or a Bruker Ultrashield 500 NMR. Spectra from solutions in CDCl₃ (&C = 77.16 ppm) are calibrated relative to TMS ($\delta H = 0.00$ ppm). The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, heptet = heptet, m = multiplet, br = respective to the second secondbroad. HRMS were carried out on a Thermo Finnigan MAT-95 spectrometer (for EI), or on a Waters, Q-Tof Ultima Global spectrometer (for ESI). Melting points were measured on an uncorrected SGW X-4 micro melting point apparatus. Unless otherwise mentioned, HPLC analysis was performed on a Gilson HPLC system (306 pump, UV/vis-156 Detector, 215 liquid handle) with a YMC-ODS column (4.6 x 50 mm, 5 μ m). HPLC conditions: solvent A = H₂O containing 0.1% (v/v) TFA, solvent B = MeCN containing 0.1% (v/v) TFA; flow rate = 2.5 mL/min; Gradient (B%): 0-0.5 min (4% isostatic), 0.5-4.5 min (4% - 95%); peaks were identified at 254 nm and 214 nm. X-Ray diffraction data were collected at T = 292(2) K using APEXII Bruker-AXS diffractometer. The samples 16 were studied with graphite monochromatized Cu-K α radiation ($\lambda = 1.54178$ Å) and the samples 18, 20, and 22 were studied with graphite monochromatized Mo-K α radiation ($\lambda = 0.71073$ Å). The structures were solved by direct methods using the SIR97 program,¹ and then refined with full-matrix least-square methods based on F^2 (SHELX-97)² with the aid of the WINGX program.³ All non-hydrogen atoms were refined

¹ A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, *J. Appl. Crystallogr.*, 1999, **32**, 115-119.

² G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, A64, 112-122.

with anisotropic atomic displacement parameters. Hydrogen atoms were finally included in their calculated positions. Molecular diagrams were generated by ORTEP-3 (version 2.02).

General radical alkylation procedure: ⁴ A solution of a heterocycle (0.625 mmol) and zinc isopropylsulfinate (1.25 mmol, 350 mg, 2 equiv) in DMSO (5 mL) was cooled in ice water and stirred vigorously while TBHP (70% solution in water, 260 μ L, 1.875 mmol, 3 equiv) was added dropwise (Do not freeze the DMSO). The solution was stirred while warming to room temperature, then warmed to 50 °C and stirred at this temperature for 12 h. The reaction was cooled to room temperature. The solution was diluted with ethyl acetate (15 mL) and washed with NaHCO₃ solution (15 mL). The aqueous layer was extracted with ethyl acetate (15 mL) and the combined organic layers were washed with brine (2x15 mL), dried over MgSO₄, and concentrated under reduced pressure, and purified by flash chromatography eluting with ethyl acetate/hexanes or dichloromethane/methanol.

Characterization of new compounds:

7-isopropyl-imidazo[1,2-b]pyridazine (15). From compound **7** (74mg, 0.625 mmol), general procedure was followed with a reaction time of 14 h to provide compound **15** (brown oil, 31 mg, 0.194 mmol, 31%); R_f 0.4 (1:2, ethyl acetate : 60 – 90 °C petroleum ether); ¹H NMR (400 MHz, Chloroform-

³ L. J. Farrugia, J. Appl. Crystallogr., 2012, 45, 849-854.

⁴ F. O'Hara, D. G. Blackmond, P. S. Baran, J. Am. Chem. Soc., 2013, 135, 12122-12134.

d) δ 8.24 (d, J = 4.7 Hz, 1H), 7.96 (d, J = 1.2 Hz, 1H), 7.74 (d, J = 1.2 Hz, 1H), 6.85 (dd, J = 4.8, 0.8 Hz, 1H), 3.71 (hept, J = 6.9 Hz, 1H), 1.42 (d, J = 6.9 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 147.3 (C), 143.4 (CH), 139.3 (CH), 132.6 (CH), 116.8 (CH), 111.9 (CH), 28.8 (CH₃), 21.7 (CH₃); HRMS (ESI+) calcd for C₉H₁₂N₃ 162.1026, found 162.1025.

4-isopropyl-1H-pyrrolo[2,3-d]pyrimidine (16). From compound **8** (74 mg, 0.625 mmol), general procedure was followed with a reaction time of 14 h to provide compound **16** (white powder, 62 mg, 0.388 mmol, 62%); mp 94-95°C (from dichloromethane/methanol eluent); R_f 0.4 (15:1, dichloromethane: methanol); ¹H NMR (400 MHz, Chloroform-*d*) δ 11.81 (s, 1H), 8.89 (s, 1H), 7.38 (dd, J = 3.5, 2.0 Hz, 1H), 6.66 (dd, J = 3.4, 1.7 Hz, 1H), 3.49 (hept, J = 7.0 Hz, 1H), 1.45 (d, J = 6.9 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 168.3 (C), 151.8 (C), 151.1 (CH), 124.9 (CH), 116.4 (C), 99.9 (CH), 34.1 (CH), 21.6 (2CH₃); HRMS (ESI+) calcd for C₉H₁₂N₃ 162.1026, found 162.1023. A single crystal of **16** was grown from ethyl acetate and *n*-hexane; X-ray crystal structure data for compound **16**: ⁵ C₉H₁₁N₃, M = 161.21, monoclinic, $P 2_I/c$, a = 7.9968(2), b = 4.75170(10), c = 22.7801(6) Å, $\beta = 95.9490(10)$ °, V = 860.95(4) Å³, Z = 4, d = 1.244 g cm⁻³, $\mu = 0.620$ mm⁻¹. A final refinement on F^2 with

⁵ CCDC 979233 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at <u>www.ccdc.cam.ac.uk/conts/retrieving.html</u> [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (internat.) +44(1223)336-033, E-mail: deposit@ccdc.cam.ac.uk].

1557 unique intensities and 111 parameters converged at $\omega R(F2) = 0.1246$ (R(F) = 0.0446) for 1281 observed reflections with $I > 2\sigma(I)$.

4-isopropyl-1H-pyrazolo[3,4-b]pyridine (**17**). From compound **9** (74 mg, 0.625 mmol), general procedure was followed with a reaction time of 14 h to provide crude compound **17** (pale yellow oil, 41.4 mg, 0.257 mmol, 41%), which contains 33% of starting materials **9** based on NMR analysis and corresponds to a corrected 27% yield of compound **17**; R_f 0.4 (25:1, dichloromethane: methanol); ¹H NMR (400 MHz, Chloroform-*d*) δ 13.84 (s, 1H), 8.59 (d, *J* = 4.9 Hz, 1H), 8.22 (s, 1H), 7.03 (dd, *J* = 4.8, 0.7 Hz, 1H), 3.39 (hept, *J* = 6.9 Hz, 1H), 1.44 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 153.6 (C), 152.2 (C), 149.0 (CH), 132.6 (CH), 114.7 (C), 113.5 (CH), 32.3 (CH), 22.9 (2CH₃); HRMS (ESI+) calcd for C₉H₁₂N₃ 162.1026, found 162.1025.

7-isopropyl-1H-pyrazolo[3,4-c]pyridine (18). From compound 10 (74 mg, 0.625 mmol), general procedure was followed with a reaction time of 14 h to provide compound 18 (white powder, 59 mg, 0.369 mmol, 59%); mp 93-95 °C (from dichloromethane/methanol eluent); R_f 0.3 (25:1, dichloromethane: methanol); ¹H NMR (400 MHz, Chloroform-*d*) δ 11.92 (s, 1H), 8.29 (d, J = 5.6 Hz,

1H), 8.18 (s, 1H), 7.53 (d, J = 5.6 Hz, 1H), 3.57 (hept, J = 7.4 Hz, 1H), 1.49 (d, J = 6.9 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 152.1 (C), 138.8 (CH), 135.2 (C), 134.6 (CH), 127.1 (C), 112.7 (CH), 33.3 (CH), 21.4 (2CH₃); HRMS (ESI+) calcd for C₉H₁₂N₃ 162.1026, found 162.1024. A single crystal of **18** was grown from ethyl acetate and *n*-hexane; X-ray crystal structure data for compound **18**: ⁶ C₁₈H₂₄N₆O, M = 340.43, orthorhombic, $P 2_{1/c}$, a = 10.079(8), b = 11.523(10), c = 15.799(12) Å, $\beta = 90$ °, V = 1835.0(3) Å³, Z = 4, d = 1.232 g cm⁻³, $\mu = 0.081$ mm⁻¹. A final refinement on F^2 with 1598 unique intensities and 120 parameters converged at $\omega R(F2) = 0.1358$ (R(F) = 0.0506) for 893 observed reflections with $I > 2\sigma(I)$.

7-isopropyl-1H-pyrazolo[**4,3-b**]**pyridine** (**19**). From compound **11** (74 mg, 0.625 mmol), general procedure was followed with a reaction time of 14 h to provide compound **19** (pale white powder, 62 mg, 0.388 mmol, 62%); mp 110-112 °C (from dichloromethane/methanol eluent); R_f 0.35 (15:1, dichloromethane: methanol); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.58 (d, *J* = 4.6 Hz, 1H), 8.41 (s, 1H), 7.19 (d, *J* = 4.6 Hz, 1H), 3.45 (hept, *J* = 6.9 Hz, 1H), 1.45 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 146.6 (CH), 141.0 (C), 140.7 (C), 135.3 (CH), 132.8 (C), 117.5 (CH), 30.2 (CH), 22.1 (2CH₃); HRMS (ESI+) calcd for C₉H₁₂N₃ 162.1026, found 162.1024.

⁶ CCDC number: 979231 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at <u>www.ccdc.cam.ac.uk/conts/retrieving.html</u> [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (internat.) +44(1223)336-033, E-mail: deposit@ccdc.cam.ac.uk].

4,6-diisopropyl-imidazo[1,2-a]pyrimidine (20). From compound **12** (74 mg, 0.625 mmol), general procedure was followed with a reaction time of 14 h to provide compound **20** (yellow powder, 43 mg, 0.213 mmol, 34%); mp 70-71 °C (from dichloromethane/methanol eluent); R_f 0.3 (25:1, dichloromethane: methanol); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 (s, 1H), 7.47 (d, J = 1.3 Hz, 1H), 6.62 (s, 1H), 3.23 (hept, J = 6.8 Hz, 1H), 3.10 (hept, J = 6.7 Hz, 1H), 1.43 (d, J = 6.9 Hz, 6H), 1.35 (d, J = 6.9 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 168.5 (C), 152.7 (C), 149.7 (C), 134.7 (CH), 107.3 (CH), 102.6 (CH), 36.8 (CH), 30.2 (CH), 22.0 (2CH₃), 19.8 (2CH₃); HRMS (ESI+) calcd for C₁₂H₁₈N₃ 204.1495, found 204.1503. A single crystal of **20** was grown from ethyl acetate and *n*-hexane; X-ray crystal structure data for compound **20**: ⁷ C₁₂H₁₇N₃, M = 203.29, monoclinic, $P 2_{I/c}$, a = 12.9851(18), b = 14.1460(19), c = 13.3141(19) Å, $\beta = 95.871(9)$ °, V = 2432.8(6) Å³, Z = 8, d = 1.110 g cm⁻³, $\mu = 0.068$ mm⁻¹. A final refinement on F^2 with 4283 unique intensities and 279 parameters converged at $\omega R(F2) = 0.2534 (R(F) = 0.0801)$ for 2809 observed reflections with $I > 2\sigma(I)$.

⁷ CCDC number:979222 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at <u>www.ccdc.cam.ac.uk/conts/retrieving.html</u> [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (internat.) +44(1223)336-033, E-mail: deposit@ccdc.cam.ac.uk].

5,7-diisopropyl-pyrazolo[**1,5-a**]**pyrimidine** (**21**). ⁸ From compound **13** (74 mg, 0.625 mmol), general procedure was followed with a reaction time of 14 h to provide compound **21** (yellow oil, 15 mg, 0.075 mmol, 12%); R_f 0.45 (1:10, ethyl acetate : 60 – 90 °C petroleum ether); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (d, J = 2.3 Hz, 1H), 6.60 (d, J = 2.3 Hz, 1H), 6.57 (s, 1H), 3.85 (hept, J = 6.9 Hz, 1H), 3.08 (hept, J = 6.9 Hz, 1H), 1.44 (d, J = 6.9 Hz, 6H), 1.35 (d, J = 6.9 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 167.3 (C), 154.8 (C), 148.8 (C), 144.2 (CH), 102.0 (CH), 95.8 (CH), 36.9 (CH), 28.6 (CH), 22.1 (2CH₃), 20.1 (2CH₃); HRMS (ESI+) calcd for C₁₂H₁₈N₃ 204.1495, found 204.1495.

4,7-diisopropyl-imidazo[1,2-a]pyrazine (22). From compound **14** (74 mg, 0.625 mmol), general procedure was followed with a reaction time of 14 h to provide compound **22** (yellow powder, 48 mg, 0.238 mmol, 38%); mp 63-64 °C (from dichloromethane/methanol eluent); R_f 0.6 (25:1, dichloromethane: methanol); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (d, J = 0.9 Hz, 1H), 7.70 (s, 1H), 7.67 (d, J = 0.9 Hz, 1H), 3.95 (hept, J = 6.9 Hz, 1H), 3.21 (hept, J = 6.9 Hz, 1H), 1.45 (t, J = 6.9 Hz, 12H); ¹³C NMR (126 MHz, CDCl₃) δ 158.13 (C), 139.93 (C), 135.13 (C), 134.3 (CH), 124.4 (CH), 111.1 (CH), 31.4 (CH), 28.9 (CH), 21.1 (2CH₃), 19.9 (2CH₃); HRMS (ESI+) calcd for C₁₂H₁₈N₃ 204.1495, found 204.1494. A single crystal of **22** was grown from ethyl acetate and *n*-hexane; X-ray

⁸ a) T. Novinson, J. P. Miller, M. Scholten, R. K. Robins, L. N. Simon, D. E. O'Brien, R. B. Meyer, *J. Med. Chem.*, 1975, **18**, 460-464; b) J. P. Miller, C. C. Sigman, H. L. Johnson, T. Novinson, R. H. Springer, K. Senga, D. E. O'Brien, R. K. Robins, *Adv. Cyclic. Nucleotide. Res.*, 1984, **16**, 277-290.

crystal structure data for compound **22**: ⁹ C₁₂H₁₇N₃, M = 203.29, monoclinic, $P 2_1/c$, a = 13.087(2), b = 11.462(2), c = 15.654(3) Å, $\beta = 92.333(8)$ °, V = 2346.2(7) Å³, Z = 8, d = 1.151 g cm⁻³, $\mu = 0.071$ mm⁻¹. A final refinement on F^2 with 5370 unique intensities and 279 parameters converged at $\omega R(F2) = 0.1753$ (R(F) = 0.0582) for 2984 observed reflections with $I > 2\sigma(I)$.

Computational Method

All calculations have been performed using geometries optimized for the parent compounds at B3LYP levels of theory using 6-31+G** basis sets with the self consistent reaction field (SCRF) polarizable continuum model (solvent=DMSO). The cations and anions of the selected molecules being open-shell species, their energies and wave functions have been calculated using the single-annihilated (the quartet state is projected out for a doublet state) UHF method. These calculations were performed using the Gaussian 09 program.¹⁰ The condensed Fukui functions (f_A^+ , f_A^- and f_A^0) are obtained from

⁹ CCDC number: 979230 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at <u>www.ccdc.cam.ac.uk/conts/retrieving.html</u> [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (internat.) +44(1223)336-033, E-mail: deposit@ccdc.cam.ac.uk].

¹⁰ Gaussian 09, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

Hirshfeld charges using eq 1. The Hirshfeld recipe for the calculation of atomic charge has been described elsewhere in detail.¹¹

described elsewhere in detail. 11

Nucleophilic _ attack :
$$f_A^+ = q_N^A - q_{N+1}^A$$

Electrophilic _ attack : $f_A^- = q_{N-1}^A - q_N^A$
Radical _ attack : $f_A^0 = (q_{N-1}^A - q_{N+1}^A)/2$

Equation 1. The definition of condensed Fukui functions. The q^A_N is the partial charge of atom A in the molecule with N electrons, while q^A_{N-1} and q^A_{N+1} are partial charges of atom A in the molecule with N-1 electrons and N+1 electrons, respectively.

Computational Results

Compound 1

Cartesian coordinates

С	-1.43196300	1.09106300	0.0000000	
С	-2.27726000	-0.01499600	-0.00001200	
С	-1.71349700	-1.29573300	-0.00001000	
Ν	-0.39492000	-1.50687600	0.0000500	
С	0.40478900	-0.42272900	0.00006700	
С	-0.04169900	0.91382500	0.00002300	
С	1.82177900	-0.70581800	-0.00000800	
С	0.91421700	2.07771200	-0.00001100	
Ν	2.96464000	-0.92452900	-0.00002400	
Н	-1.84285100	2.09606000	-0.00002200	
Н	-3.35531100	0.10560800	-0.00003500	
Н	-2.34306200	-2.18118300	-0.00005100	
Н	1.56300300	2.05795600	0.88224000	
Н	0.36880700	3.02367400	-0.00016400	

¹¹ F. L. Hirshfeld, *Theor. Chem. Acc.*, 1977, 44, 129-138.

		Hirshfeld	Hirshfeld	Hirshfeld			
Atom	Atom	charge of	charge of	charge of	f +	f -	7 *f ⁰
index	Atom	N	N-1	N+1	JA	JA	Z JA
		electrons	electrons	electrons			
1	С	-0.008481	0.043393	-0.095591	0.08711	0.051874	0.138984
2	С	-0.018499	0.089580	-0.139207	0.120708	0.108079	0.228787
3	С	0.037537	0.170575	-0.026853	0.06439	0.133038	0.197428
4	Ν	-0.177993	-0.121456	-0.283421	0.105428	0.056537	0.161965
5	С	0.057555	0.169831	-0.044286	0.101841	0.112276	0.214117
6	С	0.020261	0.126011	-0.035422	0.055683	0.10575	0.161433
7	С	0.081954	0.136468	-0.020786	0.10274	0.054514	0.157254
8	С	-0.069206	-0.034401	-0.089825	0.020619	0.034805	0.055424
9	Ν	-0.261920	-0.136955	-0.418331	0.156411	0.124965	0.281376
10	Н	0.066764	0.098173	0.026216	0.040548	0.031409	0.071957
11	Н	0.067005	0.109510	0.014270	0.052735	0.042505	0.09524
12	Н	0.056155	0.104497	0.021512	0.034643	0.048342	0.082985
13	Н	0.049267	0.085397	0.029414	0.019853	0.03613	0.055983
14	Н	0.050425	0.074071	0.033072	0.017353	0.023646	0.040999
15	Н	0.049264	0.085390	0.029413	0.019851	0.036126	0.055977

С	0.87213800	2.33098600	-0.00049300
С	2.03270100	1.57834900	-0.00017100
С	1.90328700	0.17199700	0.00016000
Ν	0.73881800	-0.45832000	0.00003600
С	-0.38480100	0.29023400	-0.00027400
С	-0.37378200	1.68189300	-0.00049200
0	3.05453300	-0.53856100	0.00050000
С	2.96180500	-1.97441700	0.00073500
С	-1.66923500	-0.49267100	-0.00055800
0	-1.73734100	-1.70969100	-0.00241000
0	-2.74791600	0.30941800	0.00146200
С	-4.03793100	-0.34199500	0.00103700

Condensed Fukui Function Predicts Innate C-H Radical Functionalization Sites On Multi-nitrogen Containing Fused Arene
Experimental Details

	Experimental	Details	
 Н	0.92342800	3.41502800	-0.00075300
Н	3.01771900	2.03098000	-0.00016900
Н	-1.29895700	2.24277200	-0.00072200
Н	3.99316300	-2.32575400	0.00098800
Н	2.43846600	-2.32818200	0.89259500
Н	2.43879500	-2.32850400	-0.89118900
Н	-4.14802700	-0.96066100	0.89392400
Н	-4.76734200	0.46610700	0.00185600
Н	-4.14827200	-0.95913200	-0.89286600

		Hirshfeld	Hirshfeld	Hirshfeld			
Atom	Atom	charge of	charge of	charge of	f.+	f	$2*f^0$
index	Atom	N	N-1	N+1	JA	JA	Z JA
		electrons	electrons	electrons			
1	С	-0.011841	0.041928	-0.093664	0.081823	0.053769	0.135592
2	С	-0.041252	0.067582	-0.155894	0.114642	0.108834	0.223476
3	С	0.145107	0.222195	0.101486	0.043621	0.077088	0.120709
4	N	-0.176681	-0.116895	-0.247528	0.070847	0.059786	0.130633
5	С	0.042637	0.131371	-0.050136	0.092773	0.088734	0.181507
6	С	-0.044505	0.073837	-0.118874	0.074369	0.118342	0.192711
7	0	-0.162649	-0.025357	-0.186191	0.023542	0.137292	0.160834
8	С	0.011740	0.048925	-0.001867	0.013607	0.037185	0.050792
9	С	0.203081	0.223264	0.099593	0.103488	0.020183	0.123671
10	0	-0.323551	-0.282448	-0.438322	0.114771	0.041103	0.155874
11	0	-0.131789	-0.113696	-0.176271	0.044482	0.018093	0.062575
12	С	0.023218	0.034072	0.003063	0.020155	0.010854	0.031009
13	Н	0.065309	0.096728	0.026127	0.039182	0.031419	0.070601
14	Н	0.061725	0.103924	0.011480	0.050245	0.042199	0.092444
15	Н	0.053957	0.095469	0.017447	0.03651	0.041512	0.078022
16	Н	0.051071	0.074704	0.041297	0.009774	0.023633	0.033407
17	Н	0.039928	0.073344	0.029104	0.010824	0.033416	0.04424
18	Н	0.039928	0.073345	0.029104	0.010824	0.033417	0.044241
19	Н	0.049198	0.057292	0.033783	0.015415	0.008094	0.023509
20	Н	0.056242	0.063176	0.042612	0.01363	0.006934	0.020564
21	Н	0.049184	0.057277	0.033773	0.015411	0.008093	0.023504

Condensed Fukui Function Predicts Innate C-H Radical Functionalization Sites On Multi-nitrogen Containing Fused Arenes Experimental Details

	L	Experimental Details					
Cartesian coordinates							
С	1.2	1108900 -0.71	1713700 0	. 0000000			
С	. 1.	18792800 0.66	6746100 0	.0000000			
Ν	0.0	0000000 1.30	0890900 0	.0000000			
С	-1.	18791400 0.66	6747600 0	.0000000			
С	-1.2	21109000 -0.7	1713600 0	.0000000			
С	-0.0	00001100 -1.4	1645800 0	.0000000			
Н	0.0	00001000 2.32	2616600 0	.0000000			
Н	2.	16279700 -1.23	3313000 0	.0000000			
Н	2.0	07486700 1.28	8665900 0	.0000000			
Н	-2.0	07486200 1.28	8666400 0	.0000000			
Н	-2.1	16281700 -1.23	3309600 0	.0000000			
Н	-0.0	00000200 -2.50	0085800 0	.0000000			

		Hirshfeld	Hirshfeld	Hirshfeld			
Atom index	Atom	charge of N	charge of N-1	charge of N+1	${f_{A}}^{+}$	f_{A}^{-}	$2*f_{A}^{0}$
		electrons	electrons	electrons			
1	С	-0.014734	0.128573	-0.102127	0.087393	0.143307	0.2307
2	С	0.042676	0.193330	-0.042313	0.084989	0.150654	0.235643
3	Ν	-0.183449	-0.120098	-0.308249	0.1248	0.063351	0.188151
4	С	0.042679	0.193328	-0.042310	0.084989	0.150649	0.235638
5	С	-0.014732	0.128574	-0.102131	0.087399	0.143306	0.230705
6	С	0.021274	0.072862	-0.084307	0.105581	0.051588	0.157169
7	С	0.100185	0.123203	-0.000961	0.101146	0.023018	0.124164
8	N	-0.254393	-0.190917	-0.411740	0.157347	0.063476	0.220823
9	Н	0.072295	0.123290	0.030062	0.042233	0.050995	0.093228
10	Н	0.057987	0.112295	0.017088	0.040899	0.054308	0.095207
11	Н	0.057987	0.112294	0.017088	0.040899	0.054307	0.095206
12	Н	0.072295	0.123290	0.03006	0.042235	0.050995	0.09323

Protonated compound 3

Cartesian coordinates

Condensed Fukui Function Predicts Innate C-H Radical	Functionalization Sites On Multi-nitrogen	Containing Fused Arenes

	Experimental	Details		
С	0.06065300	1.21747600	0.0000000	
С	1.44434600	1.18715700	0.0000000	
Ν	2.08350300	0.0000700	0.0000000	
С	1.44434600	-1.18714500	0.0000000	
С	0.06065400	-1.21746700	0.0000000	
С	-0.63912700	0.0000500	0.0000000	
Н	3.10206300	0.00000400	0.0000000	
С	-2.07607600	-0.0000900	0.0000000	
Ν	-3.23776000	-0.00002400	0.0000000	
Н	-0.45504000	2.16877300	0.0000000	
Н	2.05950600	2.07660600	0.0000000	
Н	2.05951000	-2.07659100	0.0000000	
Н	-0.45502600	-2.16877200	0.0000000	

		Hirshfeld	Hirshfeld	Hirshfeld			
Atom	A +	charge of	charge of	charge of	+ <i>ב</i>	- <i>۲</i>	၁*£ 0
index	Atom	N	N-1	N+1	JA	JA	$Z^{*}J_{A}$
		electrons	electrons	electrons			
1	С	0.029290	0.167346	-0.050635	0.079925	0.138056	0.217981
2	С	0.131877	0.286448	0.029265	0.102612	0.154571	0.257183
3	N	0.047545	0.089056	-0.047296	0.094841	0.041511	0.136352
4	С	0.131876	0.286448	0.029265	0.102611	0.154572	0.257183
5	С	0.029289	0.167346	-0.050635	0.079924	0.138057	0.217981
6	С	0.070924	0.122117	-0.045797	0.116721	0.051193	0.167914
7	Н	0.220290	0.251935	0.176020	0.04427	0.031645	0.075915
8	С	0.120798	0.143923	0.044278	0.07652	0.023125	0.099645
9	N	-0.204708	-0.137164	-0.341881	0.137173	0.067544	0.204717
10	Н	0.099341	0.147990	0.060275	0.039066	0.048649	0.087715
11	Н	0.112083	0.163284	0.068468	0.043615	0.051201	0.094816
12	Н	0.112083	0.163284	0.068467	0.043616	0.051201	0.094817
13	Н	0.099341	0.147990	0.060275	0.039066	0.048649	0.087715

Compound 4

Cartesian coordinates

Condensed Fukui Function Predicts Innate C-H Radical Functionalization Sites On Multi-nitrogen Containing Fused Arenes
Experimental Details

С	1.11288700	-1.18226700	0.00200200
С	1.84938900	0.00000100	0.00809900
С	1.11288000	1.18227000	0.00200200
Ν	-0.22769100	1.19367100	-0.00942600
С	-0.84880200	-0.00000400	-0.01323100
Ν	-0.22768900	-1.19367100	-0.00942600
С	-2.35262100	-0.00000100	0.00622200
Н	1.60618800	-2.15154400	0.00397200
Н	2.93318600	0.0000600	0.01448800
Н	1.60618300	2.15154600	0.00397200
Н	-2.71088500	0.00003300	1.04316300
Н	-2.74470800	-0.89448100	-0.48207200
Н	-2.74470500	0.89445000	-0.48212800

Atom index	Atom	Hirshfeld charge of N	Hirshfeld charge of N-1	Hirshfeld charge of N+1	f_{A}^+	f_{A}^{-}	$2*f_{A}^{0}$
1	C	0.050480	0.136354	-0 119475	0 169955	0.085874	0 255829
2	C C	-0.046351	0.024322	-0.124954	0.078603	0.070673	0.149276
3	C	0.050481	0.136355	-0.119474	0.169955	0.085874	0.255829
4	N	-0.199634	0.009380	-0.321682	0.122048	0.209014	0.331062
5	C	0.133504	0.209208	0.074899	0.058605	0.075704	0.134309
6	N	-0.199634	0.009380	-0.321679	0.122045	0.209014	0.331059
7	С	-0.092378	-0.062050	-0.119042	0.026664	0.030328	0.056992
8	Н	0.057820	0.117326	-0.017045	0.074865	0.059506	0.134371
9	Н	0.064811	0.103836	0.023633	0.041178	0.039025	0.080203
10	Н	0.057820	0.117327	-0.017045	0.074865	0.059507	0.134372
11	Н	0.047084	0.072248	0.027050	0.020034	0.025164	0.045198
12	Н	0.038035	0.063179	0.017545	0.02049	0.025144	0.045634
13	Н	0.038035	0.063180	0.017545	0.02049	0.025145	0.045635

Compound 5

Cartesian coordinates

Condensed Fukui Function Predicts Innate C-H Radical Functionalization Sites On Multi-nitrogen Containing Fused Arenes Experimental Details

С	0.0000000	1.32994900	0.0000000	
Ν	-1.19555600	0.73157000	0.0000000	
Ν	-1.26409600	-0.60550900	0.0000000	
С	-0.13598600	-1.32302000	0.0000000	
С	1.14315000	-0.75148100	0.0000000	
С	1.21397600	0.63072000	0.0000000	
Н	-0.02542000	2.41561800	0.0000000	
Н	-0.27229100	-2.40038700	0.0000000	
Н	2.02910100	-1.37733500	0.0000000	
Н	2.15933000	1.16266400	0.0000000	

		Hirshfeld	Hirshfeld	Hirshfeld			
Atom	Atom	charge of	charge of	charge of	f +	f -	7 *f ⁰
index	Atom	N	N-1	N+1	JA	JA	Z JA
		electrons	electrons	electrons			
1	С	0.028991	0.130688	-0.059668	0.088659	-0.101697	0.190356
2	Ν	-0.152241	0.079257	-0.310229	0.157988	-0.231498	0.389486
3	Ν	-0.152255	0.079360	-0.310323	0.158068	-0.231615	0.389683
4	С	0.028939	0.130687	-0.059768	0.088707	-0.101748	0.190455
5	С	-0.008684	0.064985	-0.153096	0.144412	-0.073669	0.218081
6	С	-0.008649	0.065031	-0.153085	0.144436	-0.07368	0.218116
7	Н	0.059500	0.107437	0.014814	0.044686	-0.047937	0.092623
8	Н	0.059473	0.107395	0.014805	0.044668	-0.047922	0.09259
9	Н	0.072500	0.117589	0.008453	0.064047	-0.045089	0.109136
10	Н	0.072497	0.117589	0.008440	0.064057	-0.045092	0.109149

Compound 6

С	3.44099900	-1.48805000	-1.17879900
С	3.41562600	-0.10589700	-1.36440900

Condensed Fukui Function Predicts Innate C-H Radical Functionalization Sites On Multi-nitrogen Containing Fused Arenes
Experimental Details

	Experimental	Details		
Ν	2.42796100	0.68279600	-0.92392300	
С	1.40470500	0.12845500	-0.26101700	
С	1.35645800	-1.25678900	0.02334100	
С	2.39959500	-2.05831100	-0.45378000	
Ν	0.39197700	1.00837800	0.18873300	
С	-0.94113100	0.72836100	-0.22691400	
С	-1.55881700	-0.48014300	0.14844400	
Ν	-0.91091300	-1.40490900	0.99725200	
С	0.36457700	-1.90199100	0.93170200	
Ν	-1.56360300	1.66055400	-0.94993100	
С	-2.83103600	1.43603300	-1.32128600	
С	-3.51716400	0.26521900	-1.01573300	
С	-2.87960600	-0.73021700	-0.26607200	
0	0.67841100	-2.87628600	1.62368100	
Н	-1.50146200	-1.94599100	1.61883300	
С	0.74788900	2.40957300	0.31094600	
С	0.14966600	3.16760100	1.46442000	
С	1.61698400	2.79762400	1.47624100	
С	-3.59336400	-2.00479900	0.10700700	
Н	4.25843800	-2.08645100	-1.56523700	
Н	4.22162900	0.39654200	-1.89476500	
Н	2.38779400	-3.11790000	-0.22220000	
Н	-3.31119700	2.22768400	-1.89126900	
Н	-4.53884500	0.12489500	-1.35414400	
Н	0.89191600	2.94717800	-0.62101900	
Н	-0.50938000	2.62448400	2.13500700	
Н	-0.13044200	4.20199000	1.29063000	
Н	1.92874500	2.00847000	2.15377300	
Н	2.35683500	3.57475000	1.31076700	
Н	-3.80405400	-2.05161600	1.18323600	
Н	-4.55040700	-2.07425700	-0.41410800	
Н	-2.99709200	-2.88725400	-0.14842500	

		Hirshfeld	Hirshfeld	Hirshfeld			
Atom	Atom	charge of	charge of	charge of	f +	f -	$2 * f^0$
index	Atom	N	N-1	N+1	JA	JA	ZJA
		electrons	electrons	electrons			
1	С	-0.049720	0.004878	-0.102567	0.052847	0.054598	0.107445
2	С	0.044060	0.081468	-0.071709	0.115769	0.037408	0.153177
3	Ν	-0.174888	-0.144187	-0.229597	0.054709	0.030701	0.08541
4	С	0.121660	0.136027	0.086200	0.03546	0.014367	0.049827
5	С	-0.043176	-0.011598	-0.106407	0.063231	0.031578	0.094809
6	С	-0.009349	0.016896	-0.099491	0.090142	0.026245	0.116387
7	Ν	-0.080930	0.029780	-0.086530	0.0056	0.11071	0.11631
8	С	0.103381	0.133066	0.094881	0.0085	0.029685	0.038185
9	С	0.027734	0.076474	0.018622	0.009112	0.04874	0.057852

Condensed Fukui Function Predicts Innate C-H Radical Functionalization Sites On Multi-nitrogen Containing Fused Arenes Experimental Details

10 N -0.085183 -0.051511 -0.113525 0.028342 0.033672 0.062014 11 C 0.175893 0.193329 0.088341 0.087552 0.017436 0.104988 12 N -0.179735 -0.147921 -0.194839 0.015104 0.031814 0.046918 13 C 0.024366 0.082985 -0.006901 0.031267 0.058619 0.089886 14 C -0.055189 0.03957 -0.075581 0.020392 0.026817 0.047973 16 O -0.348406 -0.302280 -0.450433 0.102027 0.046126 0.148153 17 H 0.143287 0.164734 0.118743 0.022454 0.021447 0.045991 18 C 0.000504 0.013696 -0.001846 0.00235 0.013192 0.01542 19 C -0.077037 -0.51577 -0.083618 0.024661 0.02241 21 C -0.072011 -0.060723 -0.079047								
11 C 0.175893 0.193329 0.088341 0.087552 0.017436 0.104988 12 N -0.179735 -0.147921 -0.194839 0.015104 0.031814 0.046918 13 C 0.024366 0.082985 -0.006901 0.031267 0.058619 0.089886 14 C -0.055189 0.003957 -0.075581 0.020392 0.059146 0.079538 15 C 0.005585 0.032402 -0.011335 0.01692 0.026817 0.043737 16 O -0.348406 -0.302280 -0.450433 0.102027 0.046126 0.148153 17 H 0.143287 0.164734 0.118743 0.024544 0.021447 0.045991 18 C 0.000504 0.013696 -0.001846 0.00235 0.013192 0.01542 19 C -0.07737 -0.051577 -0.083618 0.005481 0.02364 0.032041 21 C -0.072011 -0.060723	10	Ν	-0.085183	-0.051511	-0.113525	0.028342	0.033672	0.062014
12N-0.179735-0.147921-0.1948390.0151040.0318140.04691813C0.0243660.082985-0.0069010.0312670.0586190.08988614C-0.0551890.003957-0.0755810.0203920.0591460.07953815C0.0055850.032402-0.0113350.016920.0268170.04373716O-0.348406-0.302280-0.4504330.1020270.0461260.14815317H0.1432870.1647340.1187430.0245440.0214470.04599118C0.0005040.013696-0.0018460.002350.0131920.01554219C-0.077320-0.053999-0.0870590.0097390.0233210.0306620C-0.077037-0.051577-0.0836180.0065810.025460.03204121C-0.072011-0.060723-0.0790470.0070360.0112880.0182422H0.0567020.0806760.0249670.317350.0239740.0570923H0.0516840.072734-0.008010.0524850.0210470.06022825H0.0471880.0754690.0310070.0161810.0282810.0446226H0.0530350.0799800.0402890.0127460.0269450.0396127H0.0318430.0651780.0224960.0093470.0333350.04268228H0.0400800	11	С	0.175893	0.193329	0.088341	0.087552	0.017436	0.104988
13C0.0243660.082985-0.0069010.0312670.0586190.08988614C-0.0551890.003957-0.0755810.0203920.0591460.07953815C0.0055850.032402-0.0113350.016920.0268170.04373716O-0.348406-0.302280-0.4504330.1020270.0461260.14815317H0.1432870.1647340.1187430.0245440.0214470.04599118C0.0005040.013696-0.0018460.002350.0131920.0154219C-0.077320-0.053999-0.0870590.0097390.0233210.0306620C-0.07037-0.051577-0.0836180.0065810.025460.03204121C-0.072011-0.060723-0.0790470.0070360.0112880.0182422H0.0567020.0806760.0249670.0317350.0239740.05570923H0.0516840.072734-0.0008010.0524850.021050.07353524H0.0575810.0749880.0147600.0428210.0174070.06022825H0.0471880.0754690.0310070.0161810.0284510.02445226H0.0330350.0799800.0422890.0127460.0269450.03969127H0.0318430.0651780.0224960.0093470.0333350.04268228H0.0408000.	12	Ν	-0.179735	-0.147921	-0.194839	0.015104	0.031814	0.046918
14C-0.0551890.003957-0.0755810.0203920.0591460.07953815C0.0055850.032402-0.0113350.016920.0268170.04373716O-0.348406-0.302280-0.4504330.1020270.0461260.14815317H0.1432870.1647340.1187430.0245440.0214470.04599118C0.0005040.013696-0.0018460.002350.0131920.01554219C-0.077320-0.053999-0.0870590.0097390.0233210.0306620C-0.07037-0.051577-0.0836180.0065810.025460.03204121C-0.072011-0.060723-0.0790470.0070360.0112880.01832422H0.0567020.0806760.0249670.0317350.0239740.05570923H0.0516840.072734-0.0008010.0524850.021050.07353524H0.0575810.0749880.0147600.0428210.0174070.06022825H0.0471880.0754690.0310070.0161810.0284510.02445226H0.0318430.0651780.0224960.0093470.0333350.04268228H0.0400800.0525250.0347740.0053060.0124450.01775129H0.0432000.0607770.0380050.0028550.0133150.0161731H0.0486070.	13	С	0.024366	0.082985	-0.006901	0.031267	0.058619	0.089886
15C0.0055850.032402-0.0113350.016920.0268170.04373716O-0.348406-0.302280-0.4504330.1020270.0461260.14815317H0.1432870.1647340.1187430.0245440.0214470.04599118C0.0005040.013696-0.0018460.002350.0131920.01554219C-0.077320-0.053999-0.0870590.0097390.0233210.0306620C-0.077037-0.051577-0.0836180.0065810.025460.03204121C-0.072011-0.060723-0.0790470.0070360.0112880.01832422H0.0567020.0806760.0249670.0317350.0239740.05570923H0.0516840.072734-0.0008010.0524850.021050.07353524H0.0575810.0749880.0147600.0428210.0174070.06022825H0.0471880.0754690.0310070.0161810.0282810.0446226H0.0318430.0651780.0224960.0093470.033350.04268228H0.0402800.0525250.0347740.0053060.0124450.01775129H0.0432000.0607770.0342920.0089080.0175770.02648530H0.0432530.0615030.0359070.0073460.018250.02559632H0.0476230.059	14	С	-0.055189	0.003957	-0.075581	0.020392	0.059146	0.079538
16 0 -0.348406 -0.302280 -0.450433 0.102027 0.046126 0.148153 17 H 0.143287 0.164734 0.118743 0.024544 0.021447 0.045991 18 C 0.000504 0.013696 -0.001846 0.00235 0.013192 0.015542 19 C -0.077320 -0.053999 -0.087059 0.009739 0.02321 0.03306 20 C -0.077037 -0.051577 -0.083618 0.00581 0.02546 0.032041 21 C -0.072011 -0.060723 -0.079047 0.00736 0.011288 0.018324 22 H 0.056702 0.080676 0.024967 0.031735 0.023974 0.055709 23 H 0.051684 0.072734 -0.000801 0.052485 0.017407 0.660228 24 H 0.057581 0.074988 0.014760 0.042821 0.014707 0.660228 25 H 0.047188 0.052525 <t< td=""><td>15</td><td>С</td><td>0.005585</td><td>0.032402</td><td>-0.011335</td><td>0.01692</td><td>0.026817</td><td>0.043737</td></t<>	15	С	0.005585	0.032402	-0.011335	0.01692	0.026817	0.043737
17H0.1432870.1647340.1187430.0245440.0214470.04599118C0.0005040.013696-0.0018460.002350.0131920.01554219C-0.077320-0.053999-0.0870590.0097390.0233210.0330620C-0.077037-0.051577-0.0836180.0065810.025460.03204121C-0.072011-0.060723-0.0790470.0070360.0112880.01832422H0.0567020.0806760.0249670.0317350.0239740.05570923H0.0516840.072734-0.0008010.0524850.021050.07353524H0.0575810.0749880.0147600.0428210.0174070.06022825H0.0471880.0754690.0310070.0161810.0228410.04446226H0.0530350.0799800.0402890.0127460.0269450.03969127H0.0318430.0651780.0224960.0093470.0333350.04268228H0.0400800.0525250.0347740.0053060.0124450.01775129H0.0432000.0607770.0380050.0028550.0133150.01617731H0.0432530.0615030.0359070.0073460.018250.02559632H0.0476230.0597190.0393400.0082830.012060.02515733H0.0480070.06051	16	0	-0.348406	-0.302280	-0.450433	0.102027	0.046126	0.148153
18C0.0005040.013696-0.0018460.002350.0131920.01554219C-0.077320-0.053999-0.0870590.0097390.0233210.0330620C-0.077037-0.051577-0.0836180.0065810.025460.03204121C-0.072011-0.060723-0.0790470.0070360.0112880.01832422H0.0567020.0806760.0249670.0317350.0239740.05570923H0.0516840.072734-0.0008010.0524850.021050.07353524H0.0575810.0749880.0147600.0428210.0174070.06022825H0.0471880.0754690.0310070.0161810.0282810.04446226H0.0530350.0799800.0402890.0127460.0269450.03969127H0.0318430.0651780.0224960.0093470.0333350.04268228H0.0400800.0525250.0347740.0053060.0124450.01775129H0.0432000.0607770.0380050.0028550.0133150.0161731H0.0432530.0615030.0359070.0073460.018250.02559632H0.0476230.0597190.0393400.082830.0120610.0237933H0.0480070.0605180.0396750.0056440.0104330.016077	17	Н	0.143287	0.164734	0.118743	0.024544	0.021447	0.045991
19C-0.077320-0.053999-0.0870590.0097390.0233210.0330620C-0.077037-0.051577-0.0836180.0065810.025460.03204121C-0.072011-0.060723-0.0790470.0070360.0112880.01832422H0.0567020.0806760.0249670.0317350.0239740.05570923H0.0516840.072734-0.0008010.0524850.021050.07353524H0.0575810.0749880.0147600.0428210.0174070.06022825H0.0471880.0754690.0310070.0161810.0282810.04446226H0.0530350.0799800.0402890.0127460.0269450.03969127H0.0318430.0651780.0224960.0093470.0333350.04268228H0.0400800.0525250.0347740.0053060.0124450.01775129H0.0432000.0607770.0380050.0028550.0133150.0161731H0.0432630.0651780.0393400.0082830.0120960.02037933H0.0480070.0605180.0389810.0090260.0125110.02153734H0.0453190.0557520.0396750.0056440.0104330.016077	18	С	0.000504	0.013696	-0.001846	0.00235	0.013192	0.015542
20C-0.077037-0.051577-0.0836180.0065810.025460.03204121C-0.072011-0.060723-0.0790470.0070360.0112880.01832422H0.0567020.0806760.0249670.0317350.0239740.05570923H0.0516840.072734-0.0008010.0524850.021050.07353524H0.0575810.0749880.0147600.0428210.0174070.06022825H0.0471880.0754690.0310070.0161810.0282810.04446226H0.0530350.0799800.0402890.0127460.0269450.03969127H0.0318430.0651780.0224960.0093470.0333350.04268228H0.0400800.0525250.0347740.0053060.0124450.01775129H0.0432000.0607770.0380050.0028550.0133150.0161731H0.0432530.0615030.0359070.0073460.018250.0259632H0.0476230.0597190.0393400.0082830.0120960.02037933H0.0480070.0605180.0389810.009260.0125110.02153734H0.0453190.0557520.0396750.0056440.0104330.016077	19	С	-0.077320	-0.053999	-0.087059	0.009739	0.023321	0.03306
21C-0.072011-0.060723-0.0790470.0070360.0112880.01832422H0.0567020.0806760.0249670.0317350.0239740.05570923H0.0516840.072734-0.0008010.0524850.021050.07353524H0.0575810.0749880.0147600.0428210.0174070.06022825H0.0471880.0754690.0310070.0161810.0282810.0446226H0.0530350.0799800.0422890.0127460.0269450.03969127H0.0318430.0651780.0224960.0093470.0333350.04268228H0.0440800.0525250.0347740.0053060.0124450.01775129H0.0432000.0607770.0342920.0089080.0175770.02648530H0.0428530.0615030.0359070.0073460.018250.02559632H0.0476230.0597190.0393400.0082830.0120960.02037933H0.0480070.0605180.0389810.0090260.0125110.02153734H0.0453190.0557520.0396750.0056440.0104330.016077	20	С	-0.077037	-0.051577	-0.083618	0.006581	0.02546	0.032041
22H0.0567020.0806760.0249670.0317350.0239740.05570923H0.0516840.072734-0.0008010.0524850.021050.07353524H0.0575810.0749880.0147600.0428210.0174070.06022825H0.0471880.0754690.0310070.0161810.0282810.0446226H0.0530350.0799800.0402890.0127460.0269450.03969127H0.0318430.0651780.0224960.0093470.033350.04268228H0.0400800.0525250.0347740.0053060.0124450.01775129H0.0432000.0607770.0342920.0089080.0175770.02648530H0.0432530.0615030.0359070.0073460.018250.02559632H0.0476230.0597190.0393400.0082830.0120960.02037933H0.0453190.0557520.0396750.0056440.0104330.016077	21	С	-0.072011	-0.060723	-0.079047	0.007036	0.011288	0.018324
23H0.0516840.072734-0.0008010.0524850.021050.07353524H0.0575810.0749880.0147600.0428210.0174070.06022825H0.0471880.0754690.0310070.0161810.0282810.04446226H0.0530350.0799800.0402890.0127460.0269450.03969127H0.0318430.0651780.0224960.0093470.0333350.04268228H0.0400800.0525250.0347740.0053060.0124450.01775129H0.0432000.0607770.0342920.0089080.0175770.02648530H0.0408600.0541750.0380050.0028550.0133150.0161731H0.0432530.0615030.0359070.0073460.018250.02559632H0.0480070.0605180.0389810.0090260.0125110.02153734H0.0453190.0557520.0396750.0056440.0104330.016077	22	Н	0.056702	0.080676	0.024967	0.031735	0.023974	0.055709
24H0.0575810.0749880.0147600.0428210.0174070.06022825H0.0471880.0754690.0310070.0161810.0282810.04446226H0.0530350.0799800.0402890.0127460.0269450.03969127H0.0318430.0651780.0224960.0093470.0333350.04268228H0.0400800.0525250.0347740.0053060.0124450.01775129H0.0432000.0607770.0342920.0089080.0175770.02648530H0.0408600.0541750.0380050.0028550.0133150.0161731H0.0432530.0615030.0359070.0073460.018250.02559632H0.0476230.0597190.0393400.0082830.0120960.02037933H0.0480070.0605180.0389810.0090260.0125110.02153734H0.0453190.0557520.0396750.0056440.0104330.016077	23	Н	0.051684	0.072734	-0.000801	0.052485	0.02105	0.073535
25H0.0471880.0754690.0310070.0161810.0282810.0446226H0.0530350.0799800.0402890.0127460.0269450.03969127H0.0318430.0651780.0224960.0093470.0333350.04268228H0.0400800.0525250.0347740.0053060.0124450.01775129H0.0432000.0607770.0342920.0089080.0175770.02648530H0.0408600.0541750.0380050.0028550.0133150.0161731H0.0432530.0615030.0359070.0073460.018250.02559632H0.0476230.0597190.0393400.0082830.0120960.02037933H0.0480070.0605180.0389810.0090260.0125110.02153734H0.0453190.0557520.0396750.0056440.0104330.016077	24	Н	0.057581	0.074988	0.014760	0.042821	0.017407	0.060228
26H0.0530350.0799800.0402890.0127460.0269450.03969127H0.0318430.0651780.0224960.0093470.0333350.04268228H0.0400800.0525250.0347740.0053060.0124450.01775129H0.0432000.0607770.0342920.0089080.0175770.02648530H0.0408600.0541750.0380050.0028550.0133150.0161731H0.0432530.0615030.0359070.0073460.018250.02559632H0.0476230.0597190.0393400.0082830.0120960.02037933H0.0480070.0605180.0389810.0090260.0125110.02153734H0.0453190.0557520.0396750.0056440.0104330.016077	25	Н	0.047188	0.075469	0.031007	0.016181	0.028281	0.044462
27H0.0318430.0651780.0224960.0093470.0333350.04268228H0.0400800.0525250.0347740.0053060.0124450.01775129H0.0432000.0607770.0342920.0089080.0175770.02648530H0.0408600.0541750.0380050.0028550.0133150.0161731H0.0432530.0615030.0359070.0073460.018250.02559632H0.0476230.0597190.0393400.0082830.0120960.02037933H0.0480070.0605180.0389810.0090260.0125110.02153734H0.0453190.0557520.0396750.0056440.0104330.016077	26	Н	0.053035	0.079980	0.040289	0.012746	0.026945	0.039691
28H0.0400800.0525250.0347740.0053060.0124450.01775129H0.0432000.0607770.0342920.0089080.0175770.02648530H0.0408600.0541750.0380050.0028550.0133150.0161731H0.0432530.0615030.0359070.0073460.018250.02559632H0.0476230.0597190.0393400.0082830.0120960.02037933H0.0480070.0605180.0389810.0090260.0125110.02153734H0.0453190.0557520.0396750.0056440.0104330.016077	27	Н	0.031843	0.065178	0.022496	0.009347	0.033335	0.042682
29H0.0432000.0607770.0342920.0089080.0175770.02648530H0.0408600.0541750.0380050.0028550.0133150.0161731H0.0432530.0615030.0359070.0073460.018250.02559632H0.0476230.0597190.0393400.0082830.0120960.02037933H0.0480070.0605180.0389810.0090260.0125110.02153734H0.0453190.0557520.0396750.0056440.0104330.016077	28	Н	0.040080	0.052525	0.034774	0.005306	0.012445	0.017751
30 H 0.040860 0.054175 0.038005 0.002855 0.013315 0.01617 31 H 0.043253 0.061503 0.035907 0.007346 0.01825 0.025596 32 H 0.047623 0.059719 0.039340 0.008283 0.012096 0.020379 33 H 0.048007 0.060518 0.038981 0.009026 0.012511 0.021537 34 H 0.045319 0.055752 0.039675 0.005644 0.010433 0.016077	29	Н	0.043200	0.060777	0.034292	0.008908	0.017577	0.026485
31 H 0.043253 0.061503 0.035907 0.007346 0.01825 0.025596 32 H 0.047623 0.059719 0.039340 0.008283 0.012096 0.020379 33 H 0.048007 0.060518 0.038981 0.009026 0.012511 0.021537 34 H 0.045319 0.055752 0.039675 0.005644 0.010433 0.016077	30	Н	0.040860	0.054175	0.038005	0.002855	0.013315	0.01617
32 H 0.047623 0.059719 0.039340 0.008283 0.012096 0.020379 33 H 0.048007 0.060518 0.038981 0.009026 0.012511 0.021537 34 H 0.045319 0.055752 0.039675 0.005644 0.010433 0.016077	31	Н	0.043253	0.061503	0.035907	0.007346	0.01825	0.025596
33 H 0.048007 0.060518 0.038981 0.009026 0.012511 0.021537 34 H 0.045319 0.055752 0.039675 0.005644 0.010433 0.016077	32	Н	0.047623	0.059719	0.039340	0.008283	0.012096	0.020379
34 H 0.045319 0.055752 0.039675 0.005644 0.010433 0.016077	33	Н	0.048007	0.060518	0.038981	0.009026	0.012511	0.021537
	34	Н	0.045319	0.055752	0.039675	0.005644	0.010433	0.016077

Compound 7

С	1.97810000	-0.77514600	-0.0000900
С	2.09570700	0.64395800	0.00000700
С	0.95628700	1.41267500	-0.00000100
С	-0.28755800	0.74737600	-0.00000500
Ν	-0.26528000	-0.65671300	0.00000400
Ν	0.83903200	-1.43635600	0.0000900
Ν	-1.54500200	1.19595400	-0.00003000
С	-2.32485300	0.07181600	0.00005000

Condensed Fukui Function Predicts Innate C-H Radical Functionalization Sites On Multi-nitrogen Containing Fused Arenes Experimental Details

	Experimente	li Detalis		
С	-1.56751100	-1.08598100	-0.00003500	
Н	2.86307100	-1.40311200	0.00004600	
Н	3.08131800	1.09432500	0.00001500	
Н	0.98078000	2.49659200	-0.00000500	
Н	-3.40436500	0.13733600	0.00008100	
Н	-1.82308900	-2.13353000	-0.00005800	

		Hirshfeld	Hirshfeld	Hirshfeld			
Atom	Atom	charge of	charge of	charge of	f +	f -	7 *f ⁰
index	Atom	N	N-1	N+1	JA	JA	Z JA
		electrons	electrons	electrons			
1	С	0.034290	0.087176	-0.077538	0.111828	0.052886	0.164714
2	С	-0.040355	0.067949	-0.143228	0.102873	0.108304	0.211177
3	С	-0.018163	0.044541	-0.172891	0.154728	0.062704	0.217432
4	С	0.078869	0.154279	0.040234	0.038635	0.07541	0.114045
5	Ν	0.047408	0.073283	0.002132	0.045276	0.025875	0.071151
6	Ν	-0.125251	-0.045898	-0.266087	0.140836	0.079353	0.220189
7	Ν	-0.258556	-0.139509	-0.316172	0.057616	0.119047	0.176663
8	С	-0.017245	0.085987	-0.085271	0.068026	0.103232	0.171258
9	С	-0.024804	0.149878	-0.080728	0.055924	0.174682	0.230606
10	Н	0.063941	0.091868	0.014907	0.049034	0.027927	0.076961
11	Н	0.065406	0.104820	0.017122	0.048284	0.039414	0.087698
12	Н	0.071163	0.102348	0.005776	0.065387	0.031185	0.096572
13	Н	0.056054	0.099622	0.024981	0.031073	0.043568	0.074641
14	Н	0.067350	0.123722	0.036986	0.030364	0.056372	0.086736

Compound 8

Ν	-2.15429700	0.65554900	0.00000100
С	-2.03602100	-0.68853400	-0.00000600
Ν	-0.90791400	-1.40562700	0.00000400
С	0.19951100	-0.65783100	0.00000400
С	0.22791500	0.76762700	-0.00000200
С	-1.02662700	1.38206800	-0.00000700

Condensed Fukui Function Predicts Innate C-H Radical Functionalization Sites On Multi-nitrogen Containing Fused Arenes Experimental Details

	Experimental	Details	
Ν	1.49225500	-1.09879700	-0.00000300
С	2.34122300	-0.00089600	-0.00000700
С	1.60932900	1.16039800	0.00001100
Н	-2.96576200	-1.25096800	0.00001700
Н	-1.13675400	2.46429100	0.00000100
Н	1.78055600	-2.06730100	0.00001200
Н	3.41175000	-0.14553300	-0.00001500
Н	2.00792400	2.16464700	0.00001600

		Hirshfeld	Hirshfeld	Hirshfeld			
Atom	tom	charge of	charge of	charge of	f +	£ -	7 *f ⁰
index	Atom	N	N-1	N+1	JA	JA	ZJA
		electrons	electrons	electrons			
1	Ν	-0.226542	-0.175066	-0.301782	0.07524	0.051476	0.126716
2	С	0.072689	0.163728	-0.032552	0.105241	0.091039	0.19628
3	Ν	-0.219538	-0.155673	-0.343877	0.124339	0.063865	0.188204
4	С	0.101479	0.167227	0.044614	0.056865	0.065748	0.122613
5	С	-0.046488	-0.003566	-0.106232	0.059744	0.042922	0.102666
6	С	0.041186	0.121443	-0.124157	0.165343	0.080257	0.2456
7	Ν	-0.061791	0.005360	-0.092478	0.030687	0.067151	0.097838
8	С	0.021555	0.174327	-0.079070	0.100625	0.152772	0.253397
9	С	-0.082144	0.084431	-0.140224	0.05808	0.166575	0.224655
10	Н	0.042260	0.078713	-0.007078	0.049338	0.036453	0.085791
11	Н	0.055533	0.088897	-0.016117	0.07165	0.033364	0.105014
12	Н	0.172321	0.210209	0.144554	0.027767	0.037888	0.065655
13	Н	0.071443	0.124703	0.025872	0.045571	0.05326	0.098831
14	Н	0.058047	0.115250	0.028680	0.029367	0.057203	0.08657

С	2.13448700	0.63339200	-0.0000300	
С	2.01606400	-0.77590100	-0.00000200	
Ν	0.85725000	-1.44240300	0.00000100	
С	-0.22570200	-0.65255900	0.0000200	
С	-0.24244800	0.76757100	0.0000500	

Condensed Fukui Function Predicts Innate C-H Radical Functionalization Sites On Multi-nitrogen Containing Fused Arenes
Experimental Details

_

Experimental Details						
С	0.99602500	1.42975300	-0.00000100			
Ν	-1.53133100	-1.04730000	0.0000700			
Ν	-2.38372800	0.01352800	-0.00002000			
С	-1.62993300	1.10390600	0.00001000			
Н	3.12377800	1.07801100	-0.00000500			
Н	2.91520900	-1.38700400	-0.0000200			
Н	1.06388800	2.51319400	0.0000000			
Н	-1.89598600	-1.98917900	0.00001500			
Н	-2.09318100	2.08122700	0.00001400			

		Hirshfeld	Hirshfeld	Hirshfeld			
Atom	Atom	charge of	charge of	charge of	f +	f -	7 *f ⁰
index	Atom	N	N-1	N+1	JA	JA	ZJA
		electrons	electrons	electrons			
1	С	-0.054286	0.058085	-0.127297	0.073011	0.112371	0.185382
2	С	0.033789	0.088130	-0.092119	0.125908	0.054341	0.180249
3	N	-0.213564	-0.120088	-0.332885	0.119321	0.093476	0.212797
4	С	0.089989	0.130484	0.047596	0.042393	0.040495	0.082888
5	С	-0.048002	0.001103	-0.101957	0.053955	0.049105	0.10306
6	С	-0.008317	0.078476	-0.146599	0.138282	0.086793	0.225075
7	N	-0.022637	0.115486	-0.060404	0.037767	0.138123	0.17589
8	Ν	-0.167489	-0.092001	-0.278650	0.111161	0.075488	0.186649
9	С	-0.008418	0.131304	-0.089145	0.080727	0.139722	0.220449
10	Н	0.055285	0.096686	0.017074	0.038211	0.041401	0.079612
11	Н	0.050107	0.079854	-0.005289	0.055396	0.029747	0.085143
12	Н	0.066167	0.102149	0.007021	0.059146	0.035982	0.095128
13	Н	0.166003	0.220005	0.135708	0.030295	0.054002	0.084297
14	Н	0.061373	0.110320	0.026968	0.034405	0.048947	0.083352

Compound 10

С	1.91685800	-0.46252300	0.00000000
Ν	2.25299200	0.82028500	0.0000000

Condensed Fukui Function Predicts Innate C-H Rad	lical	Func	ctionalization Sites	On Multi-nitroge	n Containing	g Fused Arenes
	-					

Experimental Details							
Ν		1.09559000	1.52541000	0.0000000			
С		0.0000000	0.70920000	0.0000000			
С		0.49672500	-0.61704800	0.0000000			
С		-1.38400200	0.95787600	0.0000000			
Ν		-2.24706600	-0.05293700	0.0000000			
С		-1.77625100	-1.33157300	0.0000000			
С		-0.43273600	-1.67362000	0.0000000			
Н		2.68373400	-1.22472300	0.0000000			
Н		1.12707200	2.53458700	0.0000000			
Н		-1.78522600	1.96837400	0.0000000			
Н		-2.53617200	-2.10778300	0.0000000			
Н		-0.12358300	-2.71362900	0.0000000			

		Hirshfeld	Hirshfeld	Hirshfeld			
Atom	Atom	charge of	charge of	charge of	f +	£ -	$2*f^0$
index	Atom	N	N-1	N+1	JA	JA	ZJA
		electrons	electrons	electrons			
1	С	-0.007423	0.109374	-0.093430	0.086007	0.116797	0.202804
2	N	-0.157243	-0.089953	-0.282608	0.125365	0.06729	0.192655
3	N	-0.010638	0.103090	-0.058282	0.047644	0.113728	0.161372
4	С	0.032996	0.075431	-0.009252	0.042248	0.042435	0.084683
5	С	-0.034093	0.012051	-0.094714	0.060621	0.046144	0.106765
6	С	0.023120	0.127003	-0.119538	0.142658	0.103883	0.246541
7	N	-0.206076	-0.147206	-0.318392	0.112316	0.05887	0.171186
8	С	0.001967	0.125358	-0.061663	0.06363	0.123391	0.187021
9	С	-0.037495	0.072827	-0.145799	0.108304	0.110322	0.218626
10	Н	0.062721	0.105303	0.026106	0.036615	0.042582	0.079197
11	Н	0.173892	0.219612	0.141840	0.032052	0.04572	0.077772
12	Н	0.054038	0.094209	-0.004926	0.058964	0.040171	0.099135
13	Н	0.042698	0.088945	0.007808	0.03489	0.046247	0.081137
14	Н	0.061419	0.103882	0.012646	0.048773	0.042463	0.091236

Condensed Fukui Function Predicts Innate C-H Radical Functionalization Sites	On Multi-nitrogen Containing Fused Arenes	3

Experimental Details								
С	-1.59993400	-1.10922700	0.00002000					
Ν	-2.38347000	-0.04037900	-0.00002200					
Ν	-1.56327300	1.04470500	0.0000500					
С	-0.24619200	0.69354300	0.0000200					
С	-0.22385200	-0.72618300	-0.0000200					
С	0.95394900	1.41968800	0.0000300					
С	2.11079600	0.65544900	0.0000100					
С	2.04235500	-0.76181000	-0.0000400					
Ν	0.90992400	-1.46130700	-0.0000500					
Н	-2.02767100	-2.10245500	0.00003000					
Н	-1.96663800	1.97018700	0.00001000					
Н	0.97896000	2.50438500	0.0000600					
Н	3.08448700	1.13390000	0.0000300					
Н	2.96586700	-1.33591700	-0.0000300					

		Hirshfeld	Hirshfeld	Hirshfeld			
Atom	Atom	charge of	charge of	charge of	f +	f -	7*f 0
index	Atom	N	N-1	N+1	JA	JA	Z JA
		electrons	electrons	electrons			
1	С	-0.021571	0.125417	-0.105056	0.083485	0.146988	0.230473
2	N	-0.164833	-0.089768	-0.276754	0.111921	0.075065	0.186986
3	N	-0.015169	0.129199	-0.053626	0.038457	0.144368	0.182825
4	С	0.034437	0.075603	-0.005395	0.039832	0.041166	0.080998
5	С	0.007170	0.067976	-0.052466	0.059636	0.060806	0.120442
6	С	-0.022293	0.067988	-0.157292	0.134999	0.090281	0.22528
7	С	-0.040764	0.017460	-0.138740	0.097976	0.058224	0.1562
8	С	0.020997	0.105445	-0.074441	0.095438	0.084448	0.179886
9	Ν	-0.201008	-0.109979	-0.325558	0.12455	0.091029	0.215579
10	Н	0.058745	0.110305	0.022299	0.036446	0.05156	0.088006
11	Н	0.171956	0.226738	0.143830	0.028126	0.054782	0.082908
12	Н	0.067773	0.103189	0.010051	0.057722	0.035416	0.093138
13	Н	0.058400	0.088027	0.012142	0.046258	0.029627	0.075885
14	Н	0.046115	0.082353	0.001015	0.0451	0.036238	0.081338

Cartesian coordinates

Condensed Fukui Function Predicts Innate C-H Radical Functionalization Sites	s On Multi-nitrogen Containing Fused Arenes

Experimental Details								
C	2.17437600	-0.13816100	0.0000000					
C	1.59245400	-1.43673200	0.0000000					
Ν	0.28937400	-1.65852000	0.0000000					
C	-0.51990000	-0.58042600	0.0000000					
Ν	0.0000000	0.73678600	0.0000000					
C	1.34967700	0.95400300	0.0000000					
Ν	-1.84994400	-0.55870300	0.0000000					
C	-2.18990100	0.76899600	0.0000000					
C	-1.08278000	1.59197300	0.0000000					
Н	3.24962300	-0.01280600	0.0000000					
Н	2.23646800	-2.31238500	0.0000000					
Н	1.68774400	1.98320000	0.0000000					
Н	-3.22503100	1.08250100	0.0000000					
Н	-0.96836300	2.66462600	0.0000000					

	1		1	1	1	1	1
		Hirshfeld	Hirshfeld	Hirshfeld			
Atom	Atom	charge of	charge of	charge of	f +	f -	> *f ⁰
index	Atom	N	N-1	N+1	JA	JA	Z JA
		electrons	electrons	electrons			
1	С	-0.052569	0.002870	-0.134463	0.081894	0.055439	0.137333
2	С	0.042131	0.126669	-0.097339	0.13947	0.084538	0.224008
3	N	-0.205741	-0.134881	-0.342170	0.136429	0.07086	0.207289
4	С	0.126737	0.207279	0.083483	0.043254	0.080542	0.123796
5	N	-0.001632	0.023813	-0.046638	0.045006	0.025445	0.070451
6	С	0.065906	0.140333	-0.088168	0.154074	0.074427	0.228501
7	Ν	-0.274145	-0.143887	-0.330816	0.056671	0.130258	0.186929
8	С	-0.017129	0.087315	-0.085859	0.06873	0.104444	0.173174
9	С	-0.019800	0.159306	-0.069220	0.04942	0.179106	0.228526
10	Н	0.068004	0.095791	0.027298	0.040706	0.027787	0.068493
11	Н	0.056821	0.091707	-0.003612	0.060433	0.034886	0.095319
12	Н	0.084120	0.114844	0.018562	0.065558	0.030724	0.096282
13	Н	0.056425	0.100827	0.025106	0.031319	0.044402	0.075721
14	Н	0.070982	0.128085	0.044069	0.026913	0.057103	0.084016

Cartesian coordinates

Condensed Fukui Function Predicts Innate C-H Radica	ıl Fu	inctionalization Sites	On Multi-nitrogen	Containing Fused Arene	es
		. 1			

	Experimental	Details		
С	-1.58876900	-1.45703400	0.0000000	
С	-2.16992100	-0.15690600	0.0000000	
С	-1.34195600	0.93437700	0.0000000	
Ν	0.0000000	0.70807400	0.0000000	
С	0.52375000	-0.59771500	0.0000000	
Ν	-0.28715400	-1.68162200	0.0000000	
Ν	0.96714600	1.65458100	0.0000000	
С	2.11252600	0.94668600	0.0000000	
С	1.91058500	-0.44097000	0.0000000	
Н	-2.23493100	-2.33120200	0.0000000	
Н	-3.24482100	-0.02924400	0.0000000	
Н	-1.66136000	1.96929700	0.0000000	
Н	3.05388300	1.48008900	0.0000000	
Н	2.64999700	-1.22680100	0.0000000	

		Hirchfold	Hirchfold	Hirchfold			
		Hirshield	Hirshield	Hirshield			
Atom	Atom	charge of	charge of	charge of	f.+	f. ⁻	$2*f.^{0}$
index	Atom	N	N-1	N+1	JA	JA	Z JA
		electrons	electrons	electrons			
1	С	0.045693	0.116908	-0.095931	0.141624	0.071215	0.212839
2	С	-0.052530	0.024505	-0.134736	0.082206	0.077035	0.159241
3	С	0.059380	0.140636	-0.103681	0.163061	0.081256	0.244317
4	Ν	0.046510	0.077411	0.001113	0.045397	0.030901	0.076298
5	С	0.082268	0.150889	0.043395	0.038873	0.068621	0.107494
6	N	-0.196406	-0.113386	-0.333221	0.136815	0.08302	0.219835
7	Ν	-0.192265	-0.054659	-0.243623	0.051358	0.137606	0.188964
8	С	-0.006709	0.072178	-0.066864	0.060155	0.078887	0.139042
9	С	-0.108371	0.067897	-0.160746	0.052375	0.176268	0.228643
10	Н	0.057850	0.090575	-0.003411	0.061261	0.032725	0.093986
11	Н	0.068158	0.101143	0.027151	0.041007	0.032985	0.073992
12	Н	0.078978	0.113178	0.008173	0.070805	0.0342	0.105005
13	Н	0.060022	0.097648	0.031982	0.02804	0.037626	0.065666
14	Н	0.057361	0.115038	0.030490	0.026871	0.057677	0.084548

Condensed Fukui Function Predicts Innate C-H Radical Functionalization Sites On Multi-nitrogen Containing Fused Arenes
Experimental Details

_

	С	-2.15866100	-0.18944600	0.0000000
Ν	١	-1.67672600	-1.47512200	0.0000000
(2	-0.36884300	-1.64049000	0.0000000
(2	0.54011400	-0.55566000	0.0000000
Ν	1	0.0000000	0.73821100	0.0000000
(2	-1.36313800	0.92236100	0.0000000
Ν	1	1.87628100	-0.51771200	0.0000000
(2	2.19092000	0.80935100	0.0000000
(2	1.05991600	1.61099200	0.0000000
ŀ	1	-3.23660300	-0.07457100	0.0000000
F	1	0.02717300	-2.65291800	0.0000000
ŀ	1	-1.73369000	1.93915500	0.0000000
F	1	3.21867500	1.14681300	0.0000000
F	1	0.92570200	2.68122900	0.0000000

		Hirshfeld	Hirshfeld	Hirshfeld			
Atom	om Atom	charge of	charge of	charge of	$f_{A}{}^{+}$	f_{A}	$2*f_{A}^{0}$
index		N	N-1	N+1			
		electrons	electrons	electrons			
1	С	0.000432	0.087701	-0.067682	0.068114	0.087269	0.155383
2	N	-0.203833	-0.113818	-0.326839	0.123006	0.090015	0.213021
3	С	0.030918	0.103821	-0.135954	0.166872	0.072903	0.239775
4	С	0.078021	0.134639	0.033927	0.044094	0.056618	0.100712
5	N	0.006589	0.036587	-0.044744	0.051333	0.029998	0.081331
6	С	0.034467	0.143312	-0.087957	0.122424	0.108845	0.231269
7	N	-0.251199	-0.124562	-0.319121	0.067922	0.126637	0.194559
8	С	-0.010254	0.068225	-0.081117	0.070863	0.078479	0.149342
9	С	-0.008626	0.142722	-0.071320	0.062694	0.151348	0.214042
10	Н	0.055134	0.092468	0.019487	0.035647	0.037334	0.072981
11	Н	0.057143	0.091523	-0.011410	0.068553	0.03438	0.102933
12	Н	0.078858	0.118478	0.024341	0.054517	0.03962	0.094137
13	Н	0.058409	0.095240	0.026098	0.032311	0.036831	0.069142
14	Н	0.074092	0.123788	0.042497	0.031595	0.049696	0.081291

-The End-