Supporting information

Bio-inspired Janus Gold Nanoclusters with Lipid and Amino Acid Functional Capping Ligands: Micro-voltammetry and In-situ Electron Transfer in a Biogenic Environment

Nirod Kumar Sarangi and Archita Patnaik*

Department of Chemistry, Indian Institute of Technology Madras, Chennai-600 036, India

Figure S1. Redox behaviour of 1×10^{-3} M aqueous solutions of HAuCl₄ (solid black line) and L-tyrosine (solid red line) at pH=10 in 0.1 M LiClO₄ electrolyte. Pt disc: working electrode, Pt wire: counter electrode, Ag/AgCl: reference electrode. (b) TEM image of LS film transferred from tyrosine modified subphase at pH=6.4.

The irreversible redox behavior of both $AuCl_4$ as well as tyrosine in basic pH and the magnitude of redox potential imply the potential of tyrosine to fall in a range between the oxidation and reduction of Au.

Figure S2. (a) *p*-Polarized IRRAS spectra in the region 1800-900 cm⁻¹ for (i) DPPC, (ii) TOAB, (iii) TOA⁺-Au³⁺ over pure water subphase, (iv) DPPC/TOA⁺-Au³⁺ over pure water subphase, (iv) and (v) DPPC/TOA⁺-Au³⁺ over tyrosine modified subphase at pH =10 after 5 and 10 mins respectively at a constant surface pressure 20 mN/m. (b) p-Polarized IRRAS spectra in the alkyl chain stretching vibrational region (3000-2800 cm⁻¹) under varied experimental conditions.

At low surface pressure, no significant shift in DPPC functional groups (data not shown) was witnessed. However, at higher surface pressure, above ~20 mN/m and with increasing reaction time (30 mins), the choline as well as the phosphate group vibrations of DPPC engage through electrostatic interaction with TOA-Au complex as evidenced from Fig. S2a. In presence of tyrosine and with time, evolution of increasing order in the alkyl chains is evident from the observed all-trans conformation of the v_a (CH₂) stretching frequency (shifts from 2921 to 2918 cm⁻¹) in Figure S2b. Surface pressure induced hydrophobic interactions

between the $-CH_2$ alkyl chains of DPPC and TOA and typical head-group interactions provide a suitable environment for the templated assembly and nucleation site for Janus NP formation.

Figure S3. DFT (b3lyp/6-31g(d)) energy minimized structure of tyrosine along with its frontier orbitals HOMO and LUMO.

Mulliken charge analysis	DPPC	Au3	Tyr	Janus NP
Au ₁	-	-0.020	-	-0.126
Au ₂	-	0.041	-	0.0
Au ₃	-	0.067	-	0.0281
$PO_2^{-}(O_1)$	-0.585	-	-	-0.623
PO ₂ -(P)	1.224	-	-	1.371
Tyr (N ₂)	-	-	-0.558	-0.751
Tyr (O ₅)	-	-	-0.298	-0.525
Tyr (O ₆)	-	-	-0.416	-0.518

Figure S4. Mulliken charge analysis for pristine DPPC, Au3, tyrosine and the Janus cluster.

Experimental procedures for the syntheses of pristine DPPC and tyrosine capped Au clusters:

The synthesis of DPPC-capped Au clusters was done by slight modification of the reported procedure.¹ In short, 0.9 mg of DPPC was dissolved in 2 ml of CHCl₃ taken in a round bottom flask and stirred vigorously for 10 min. 1 ml of 1 mM aqueous solution of HAuCl₄ was then added followed by 10 mM sodium citrate aqueous solution into the stirred CHCl₃ solution. The reactants were continuously stirred for 12 h. The lower organic phase turned from clear solution to faint pink (cf. Figure S5a, inset).

Figure S5. (a) UV-Vis spectrum of pristine DPPC capped Au NP extracted into chloroform phase showing the surface plasmon band at 522 nm. (b) p-polarized FT-IRRAS spectral analysis of DPPC protected Au NP at air/water interface evidencing the binding of DPPC to Au through electrostatic interaction, acquired at a holding surface pressure of 30 mN/m. (c) UV-Vis absorption spectral characteristics of tyrosine protected gold nanoclusters and their precursors; the surface plasmon band at ~ 530 nm is observed.

For the tyrosine capped Au NPs, 10 ml of 0.1 mM aqueous $HAuCl_4$ and 1 mM of tyrosine was stirred for 30 min. 1 ml of KOH (pH=10) aqueous solution was then drop wise added to the reaction flask over a period of 5 min. The colour of the reactant turned yellow to black confirming the feasibility of reduction process. The prepared solutions were then subjected to UV-Vis spectral acquisition.

Figure S6. Differential pulse voltammetry of pristine (a) tyrosine and (b) DPPC capped Au nanoclusters at Pt UME (25 μ m) showing quantized redox behaviour. The HOMO-LUMO gaps were estimated to be 0.81 and 0.83 V respectively.

Laviron Equation:

 $\log k_{app} = \alpha \log(1-\alpha) + (1-\alpha) \log \alpha - \log(RT / nFv) - \alpha(1-\alpha)nF\Delta E_p / 2.3RT$

References:

1. H. Zhu, C. Tao, S. Zheng and J. Li. Colloid and Surface A: Physiochem. Eng. Aspects 2005, 257-258, 411-414.