Supplementary Information

Selective *N*-Alkylation of Primary Amines with R-NH₂.HBr and Alkylbromides using Competitive Deprotonation/Protonation Strategy

Shubhankar Bhattacharyya, Uma Pathak*, Sweta Mathur, Subodh Vishnoi

Synthetic Chemistry Division, Defence R & D Establishment, Jhansi Road, Gwalior-474002 (M. P.) India.

Contents

1.	General details	P2
2.	Experimental procedure	P2-P3
3.	Spectroscopic characterization data	P3-P5
4.	Copies of ¹ H NMR, ¹³ C NMR	P7-P22

1. General details

Reagents were obtained from commercial suppliers, and used without further purification. Solvents were purified by the usual method and stored over molecular sieves. Column chromatographic purification of products was performed on neutral alumina. ¹H NMR and ¹³C spectra were recorded on a Bruker AVANCE II 400 and 600 MHz. Chemical shifts were expressed in parts per millions (δ) downfield from the internal standard tetramethylsilane and were reported as s (singlet), d (doublet), t (triplet), q (quartet), quin (quintet) and m (multiplet). Mass spectra was obtained from Agilent 5975C GC-MS with HP5-MS column and Elemental analysis was performed on Elementar vario MICRO cube CHNS analyser.

2. Experimental procedure

2.1 Experimental procedure for preparation of *N*-benzylbutan-1amine -

1 mmol of amine hydrobromide salt (188 mg), 1.1 mmol of butyl bromide (118 μ l) and 0.25gm of 4Å molecular sieves were taken in 1 ml dry DMF at 20-25°C . Triethylamine (1 mol, 144 μ l) was mixed with 1 ml of DMF and added to the reaction mixture portionwise (1/40th) over a period of 8 hrs with continuous stirring. Progress of the reaction was monitored by TLC and GC-MS. After the addition is over, reaction was further continued for one hr at the same temperature. pH of the solution was adjusted to 4-5 with 10% Aq. HCl and DMF was removed under vacuum. Contents were neutralized with 5% Na₂CO₃ and extracted with ethylacetate. The organic layer was dried over anhydrous sodium sulfate and solvent was distilled off to yield a light yellow oil. Further purification was achieved through column chromatography neutral alumina, hexane-ethylacetate (98:2).

3. Spectroscopic characterization data

- N-benzylbutan-1-amine:¹ Oil; ¹H NMR (600 MHz, CDCl₃): δ 7.37-7.35 (m, 4H), 7.31-7.26 (m, 1H), 3.82 (s, 2H), 2.67 (t, 2H, *J*=7.2 Hz), 1.56-1.51 (m, 2H), 1.42-1.36 (m, 2H), 0.95 (t, 3H, *J*=7.2 Hz); ¹³C NMR (150.9 MHz, CDCl₃) δ 140.60, 128.39, 128.13, 126.87, 54.14, 49.23, 32.28, 20.52, 14.05; EIMS: m/z 65(8%), 91(100%), 106 (5%), 120 (47%).
- 2) N-benzyloctan-1-amine:² Oil; ¹H NMR (400 MHz, CD₃OD): δ 7.31-7.30 (d, 4H, J=4.4 Hz), 7.24 (t, 1H, J=4.0 Hz), 3.72 (s, 2H), 2.53 (t, 2H, J= 7.2 Hz), 1.51 (t, 2H, J=6.8 Hz), 1.28 (s, 10H), 0.87 (t, 3H, J=6.8 Hz); ¹³C NMR (150.9 MHz, CDCl₃) δ 138.24, 128.64, 128.56, 127.44, 53.31, 48.76, 31.82, 29.43, 29.25, 29.19, 27.26, 22.66, 14.12; EIMS: m/z 65(6%), 91(100%), 106(9%), 120(80%), 132(7%), 160(10%).
- 3) N-benzyl-2-phenylethanamine:³ Oil; ¹H NMR (600 MHz, CDCl₃): δ 7.38-7.16 (m, 10H), 3.85 (s, 2H), 2.95 (t, 2H, J=6.0 Hz), 2.88 (m, 2H, J=6.0 Hz);
 ¹³C NMR (150.9 MHz, CDCl3) δ 140.04, 139.65, 128.42, 128.31, 128.20, 128.12, 127.10, 126.95, 53.89, 50.56, 36.36; EIMS: m/z 65 (11%), 91(100%), 118(11%), 120(52%)
- **4)** *N*-(1-phenylethyl)butan-1-amine:⁴ Oil; ¹H NMR (600 MHz, CDCl₃): δ 7.37-7.33 (m, 4H), 7.29-7.25 (m, 1H), 3.78 (q, 1H, *J*=6.0 Hz), 2.55-2.51 (m, 1H), 2.47-2.43 (m, 1H), 1.53-1.42 (m, 2H), 1.38 (d, 3H, *J*=6.0 Hz), 1.37-1.29 (m, 2H), 0.91 (t, 3H, *J*=6.0 Hz); ¹³C NMR (150.9 MHz, CDCl₃) δ 145.89, 128.40, 126.82, 126.55, 58.42, 47.59, 32.43, 24.32, 20.51, 14.01; EIMS: m/z 77(17%), 79(14%), 91(8%), 103(9%), 105(100%), 106(21%), 134(12%), 162(65%)
- 5) Methyl 3-(benzylamino)propanoate:⁵ Oil; ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.26 (m, 5H), 3.82 (s, 2H), 3.69 (s, 3H), 2.92 (t, 2H, J=6.4 Hz), 2.56 (t, 2H, J=6.4 Hz), 1.89 (s, 2H); ¹³C NMR (100.6 MHz, CDCl₃) δ 173.24, 140.03,

128.43, 128.10, 127.01, 53.75, 51.62, 44.43, 34.51; EIMS: m/z 55(14%), 65(11%), 91(100%), 106(50%), 118(10%), 120(21%).

- 6) N-(2,4-dichlorobenzyl)butan-2-amine: Oil ; ¹H NMR (600 MHz, CDCl₃): δ 7.39-7.38 (m, 2H), 7.24-7.23 (m, 1H), 3.84 (ABq, 2H, J=18.0 Hz), 2.62-2.57 (m, 1H), 1.57-1.50 (m, 1H), 1.45-1.35 (m, 1H), 1.09 (d, 3H, J=6.0 Hz), 0.91 (t, 3H, J=6.0 Hz); ¹³C NMR (150.9 MHz, CDCl₃) δ 136.92, 134.29, 133.09, 130.96, 129.23, 127.04, 53.89, 48.24, 29.55, 19.86, 10.24; EIMS: m/z 89(7%), 123(7%), 159(100%), 160(8%), 161(63%), 163(10%), 202(49%), 204(31%); Anal. Calcd for C₁₁H₁₅Cl₂N. C, 56.91; H, 6.51; N, 6.03; Found: C, 57.01; H, 6.55; N, 5.98.
- 7) N-phenethylpentan-2-amine:⁶ Oil, ¹H NMR (600 MHz, CDCl₃): δ 7.34-7.31 (m, 2H), 7.25-7.22 (m, 3H), 2.97-2.93 (m, 1H), 2.88-2.81 (m, 3H), 2.68-2.63 (m, 1H), 1.47-1.40 (m, 1H), 1.34-1.24 (m, 3H), 1.05 (d, 3H, *J*=6.0 Hz), 0.91 (t, 3H, *J*=6.0 Hz); ¹³C NMR (150.9 MHz, CDCl₃) δ 140.18, 128.70, 128.45, 126.13, 52.84, 48.61, 39.38, 36.61, 20.27, 19.19, 14.25; EIMS: m/z 58(9%), 77(9%), 91(13%), 100(100%), 105(54%), 148(31%); Anal. Calcd for C₁₃H₂₁N. C, 81.61; H, 11.06; N, 7.32; Found: C, 81.69; H, 11.01; N, 7.29
- 8) N-phenethylpropan-2-amine:⁷ Oil; ¹H NMR (600 MHz, CDCl₃): δ 7.33-7.31 (m, 2H), 7.25-7.22 (m, 3H), 2.91-2.88 (m, 2H), 2.85-2.81 (m, 3H), 1.07 (d, 6H, *J*=6.0 Hz); ¹³C NMR (150.9 MHz, CDCl₃) δ 140.16, 128.70, 128.47, 126.13, 48.81, 48.55, 36.60, 22.93; EIMS: m/z 65(6%), 72(100%), 77(8%), 91(12%), 105(24%).
- 9) Ethyl 2-(benzylamino) propanoate:⁸ Oil; ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.29 (m, 4H), 7.25-7.22 (m, 1H), 4.18 (q, 2H, *J*=7.2 Hz), 3.81 (d, 1H, *J*=12.8 Hz), 3.69 (d, 1H, *J*=12.8 Hz), 3.38 (q, 1H, *J*=7.2 Hz), 1.32 (d, 3H, *J*=6.8 Hz), 1.27 (t, 3H, *J*=7.2 Hz); ¹³C NMR (100.6 MHz, CDCl₃) δ 175.42, 139.36, 128.42, 128.36, 127.16, 60.70, 55.85, 51.81, 18.91, 14.27; EIMS: m/z 65(10%), 91(100%), 106(9%), 134(73%).
- 10) Ethyl 2-(phenethylamino) propanoate:⁹ Oil; ¹H NMR (400 MHz, CDCl₃): δ
 7.32-7.28 (t, 2H, *J*=7.2), 7.23-7.20 (m, 3H), 4.17 (q, 2H, *J*=7.2 Hz), 3.40 (q, 1H, *J*=6.8 Hz), 2.91-2.87 (m, 2H), 2.85-2.80 (m, 2H), 1.32 (d, 3H, *J*=7.2 Hz), 1.26 (t, 3H, *J*=7.2 Hz); ¹³C NMR (100.6 MHz, CDCl₃) δ 175.16, 139.50, 128.77, 128.68, 128.47, 126.26, 60.77, 56.61, 49.10, 36.28, 18.74, 14.22; EIMS: m/z 56(49%), 77(14%), 79(10%), 91(16%), 102(30%), 103(12%), 105(76%), 130(100%), 148(81%); Anal. Calcd for C₁₃H₁₉NO₂. C, 70.56; H, 8.65; N, 6.33; Found C, 70.71; H, 8.61; N, 6.31.
- 11) Ethyl 2-(cyclohexylamino) propanoate: Oil; ¹H NMR (400 MHz, CDCl₃): δ
 4.14 (q, 2H, *J*=6.8 Hz), 3.45 (q, 1H, *J*=6.8 Hz), 2.46 (br, s, 1H), 2.38-2.33 (br
 m, 1H), 1.85 (d, 1H, *J*=12.0 Hz), 1.74-1.66 (m, 3H), 1.55 (d, 1H, *J*=9.6), 1.26-1.00 (m, 10H); ¹³C NMR (100.6 MHz, CDCl₃) δ 175.92, 60.61, 55.13, 53.43, 33.80, 32.58, 25.88, 24.98, 24.72, 19.46, 14.18; EIMS: m/z 55(8%), 126(%), 127(9%), 156(7%); Anal. Calcd for C₁₁H₂₁NO₂. C, 66.29; H, 10.62; N, 7.03; Found C, 66.51; H, 10.58; N, 6.99

- **12**) *N*-phenethylcyclohexanamine:¹⁰ Oil; ¹H NMR (600 MHz, CDCl₃): δ 7.33-7.31 (m, 2H), 7.25-7.23 (m, 3H), 2.93 (t, 2H, *J*=6.0 Hz), 2.83 (t, 2H, *J*=6.0 Hz) 2.48-2.44 (m, 1H), 1.90-1.87 (m, 2H), 1.75-1.72 (m, 2H), 1.32-1.23 (m, 3H), 1.21-1.14 (m, 1H), 1.11-1.05 (m, 2H); ¹³C NMR (150.9 MHz, CDCl₃) δ 140.18, 128.70, 128.45, 126.12, 56.75, 48.23, 36.64, 33.54, 26.17, 25.08; EIMS: m/z 55(12%), 77(6%), 83(8%), 91(8%), 105(11%), 112(100%).
- 13) *N*-butylcyclohexanamine:¹¹ Oil; ¹H NMR (400 MHz, CD₃OD): δ 2.55 (t, 2H, *J*=7.6 Hz), 2.38-2.37 (m, 1H), 1.90-1.87 (m, 2H), 1.74-1.71(m, 2H), 1.63-1.60 (m, 1H), 1.47-1.04 (complex m, 10H), 0.91 (t, 3H, *J*=7.2 Hz); ¹³C NMR (100.6 MHz, CDCl₃) δ 56.93, 46.57, 33.37, 32.34, 26.09, 25.08, 20.55, 13.98; EIMS: m/z 55(10%), 56(15%), 84(6%), 112(100%), 155(7%).
- 14) *N*-butylaniline:¹² Oil; ¹H NMR (600 MHz, CDCl₃): δ 7.25-7.22 (m, 2H), 6.75 (t, 1H, *J*=7.2 Hz), 6.66 (d, 2H, *J*=7.8 Hz), 3.17 (t, 2H, *J*=7.2 Hz), 1.69-1.64 (quin, 2H, *J*=7.2 Hz), 1.53-1.46 (m, 2H), 1.02 (t, 3H, *J*=7.2 Hz); ¹³C NMR (100.6 MHz, CDCl₃) δ 148.61, 129.26, 117.11, 112.74, 43.72, 31.74, 20.36, 13.97; EIMS: m/z 77(12%), 106(100%), 107(8%), 149(22%)
- **15) 4-methoxy-***N***-pentylbenzenamine:¹³** Oil; ¹H NMR (400 MHz, CD₃OD): δ 6.73 (d, 2H, *J*=8.8 Hz), 6.62 (d, 2H, *J*=8.8 Hz), 3.70 (s, 3H), 2.99 (t, 2H, *J*=7.2 Hz), 1.60-1.56 (br, m, 2H), 1.38-1.35 (m, 4H), 0.91 (t, 3H, *J*=6.8Hz); ¹³C NMR (100.6 MHz, CDCl₃) δ 152.03, 142.74, 114.89, 114.17, 55.82, 45.12, 29.41, 29.36, 22.56, 14.11; EIMS: m/z 108(7%), 121(5%), 136(100%), 137(9%), 193(24%)

4. Copies of ¹H NMR, ¹³C NMR:

- 1. ¹H NMR spectra of *N*-benzylbutan-1-amine
- 2. ¹³C NMR spectra of *N*-benzylbutan-1-amine
- 3. ¹H NMR spectra of *N*-benzyloctan-1-amine
- 4. ¹³C NMR spectra of *N*-benzyloctan-1-amine
- 5. ¹H NMR spectra of *N*-benzyl-2-phenylethanamine
- 6. ¹³C NMR spectra of *N*-benzyl-2-phenylethanamine
- 7. ¹H NMR spectra of *N*-((*S*)-1-phenylethyl)butan-1-amine
- 8. ¹³C NMR spectra of *N*-((*S*)-1-phenylethyl)butan-1-amine
- 9. ¹H NMR spectra of methyl 3-(benzylamino)propanoate
- 10. ¹³C NMR spectra of methyl 3-(benzylamino)propanoate
- 11. ¹H NMR spectra of N-(2,4-dichlorobenzyl)butan-2-amine
- 12. ¹³C NMR spectra of N-(2,4-dichlorobenzyl)butan-2-amine
- 13. ¹H NMR spectra of N-phenethylpentan-2-amine

- 14. ¹³C NMR spectra of N-phenethylpentan-2-amine
- 15. ¹H NMR spectra of *N*-phenethylpropan-2-amine
- 16. ¹³C NMR spectra of *N*-phenethylpropan-2-amine
- 17. ¹H NMR spectra of ethyl 2-(benzylamino)propanoate
- 18. ¹³C NMR spectra of ethyl 2-(benzylamino)propanoate
- 19. ¹H NMR spectra of ethyl 2-(phenethylamino)propanoate
- 20. ¹³C NMR spectra of ethyl 2-(phenethylamino)propanoate
- 21. ¹H NMR spectra of ethyl 2-(cyclohexylamino)propanoate
- 22. ¹³C NMR spectra of ethyl 2-(cyclohexylamino)propanoate
- 23. ¹H NMR spectra of *N*-phenethylcyclohexanamine
- 24. ¹³C NMR spectra of *N*-phenethylcyclohexanamine
- 25. ¹H NMR spectra of *N*-butylcyclohexanamine
- 26. ¹³C NMR spectra of *N*-butylcyclohexanamine
- 27. ¹H NMR spectra of *N*-butylbenzenamine
- 28. ¹³C NMR spectra of N-butylbenzenamine
- 29. ¹H NMR spectra of 4-methoxy-N-pentylbenzenamine
- 30. ¹³C NMR spectra of 4-methoxy-N-pentylbenzenamine

References:

- (a) Zhang, W.; Dong, X.; Zhao, W. Org. Lett., 2011, 13, 5386.
 (b) Shankaraiah, N.; Markandeya, N.; Srinivasulu, V.; Sreekanth, K.; Reddy, Ch. S.; Santos, L. S.; Kamal, A. J. Org. Chem., 2011, 76, 7017.
- (a) Fukumoto, Y.; Asai, H.; Shimizu, M.; Chatani, N. J. Am. Chem. Soc., 2007, 129, 13792.
 (b) Cano, R.; Yus, M.; Ramon, D. J. Tetrahedron, 2011, 67, 8079.
- (a) Kwon, M. S.; Kim, S.; Park, S.; Bosco, W.; Chidrala, R. K.; Park, J. J. Org. Chem., 2009, 74, 2877. (b) Brinkmann, C.; Barrett, A. G. M.; Hill, M. S.; Procopiou, P. J. Am. Chem. Soc., 2012, 134, 2193.
- (a) Watson, A. J. A.; Maxwell, A. C.; Williams, J. M. J.; *J. Org. Chem.*, 2011, 76, 2328. (b) Ruano, J. L. G.; Parra, A.; Aleman, J.; Yuste, F.; Mastranzo, V. M.; *Chem. Comm.*; 2009,4, 404. (c) Wang, C.; Pettman, A.; Bacsa, J.; Xiao, J.; *Angew. Chem. Int. Ed.*, 2010, 49, 7548.
- (a) Xu, J-M.; Wu, Q.; Zhang, Q-Yi.; Zhang, F.; Lin, X-F. *Eur. J. Org. Chem.*, 2007, *11*, 1798.
 (b) Dhake, K. P.; Tambade, P. J.; Singhal, R. S.; Bhanage, B. M. *Tet. Lett.*, 2010, *51*, 4455. (c) Escalante, J.; Morales, M. C.; Linzaga, I.; *Molecules*, 2008, *13*, 340.
- 6. Yu, Z.; Alesso, S.; Pears, D.; Worthington, P. A.; Luke, R. W. A.; Bradley, M. J. Chem. Soc., Perkin Trans. 1, 2001, 1947.
- (a) Basle, E.; Jean, M.; Gouault, N.; Renault, J.; Uriac, P.; *Tet. Lett.*, 2007, 48, 8138. (b) Saidi, O.; Blacker, A. J.; Farah, M. M.; Marsden, S. P.; Williams, J. M. J.; *Angew. Chem. Int. Ed.*; 2009, 48, 7375.
- 8. Cho, B. T.; Kang, S. K. Tetrahedron, 2005, 61, 5725.
- 9. Weber, D.; Berger, C.; Eickelmann, P.; Antel, J.; Kessler, H. J. Med. Chem., 2003, 46, 1918.
- (a) Fujita, K-I.; Enoki, Y.; Yamaguchi, R. *Tetrahedron*, 2008, *64*, 1943. (b) Esteruelas, M. A.; Lopez, A. M.; Mateo, A. C.; Onate, E. *Organometalics*, 2005, *24*, 5084. (c) Katritzky, A. R.; Latif, M.; Urogdi, L. *J. Chem. Soc. Perkin Trans1*, 1990, 667.
- 11. Nacario, R.; Kotakonda, S.; Fouchard, D. M. D.; Tillekeratne, L. M. V.; Hudson, R. A. Org. Lett., 2005, 7, 471.
- 12. (a) Lee, M. H.; Cho, B-K.; Yoon, J.; Kim, J. S. Org. Lett., 2007, 9, 4515. (b) Tao, C-Z.; Liu, W-W.; Sun, J-Y.; Cao, Z-L.; Li, H.; Zhang, Y-F. *Synthesis*, 2010, 1280.
- (a) Jiang, D.; Fu, H.; Jiang, Y.; Zhao, Y. J. Org. Chem., 2007, 72, 672. (b) Neogi, S.; Naskar, D. Syn. Comm., 2011, 1901. (c) Arundhati, R.; Kumar, D. C.; Sreedhar, B. Eur. J. Org. Chem., 2010, 19, 3621.